
296140-AN, Rev. 4
MCO-0000262

March 27, 2024

Application Information
3D Linear or 2D Angle Sensing

with ALS31300 and ALS31313 Hall-Effect ICs
By Wade Bussing and Robert Bate,

Allegro MicroSystems

Abstract
This application note describes the use of the ALS31300 and
ALS31313 3D linear Hall-effect sensor integrated circuits
(IC) from Allegro MicroSystems for 3D linear sensing
and 2D angle sensing applications. References throughout
this application note to the ALS31300 also apply for the
ALS31313, except that the ALS31300 is provided in a
10-contact DFN package, and the ALS31313 is provided in
a TSSOP-8 package.
Detailed examples include converting register contents to
gauss for linear sensing, and combining data from two axes
to calculate an angle for rotational angle sensing. Other sec-
tions describe the process of reading and writing registers on
the ALS31300 via the I2C interface, application schematics,
and the associated Arduino example code. See Appendix A
for full source code, including an Arduino .ino sketch file.
The Arduino .ino sketch file is also available on Allegro’s
Software Portal.

Introduction
The ALS31300 3D linear Hall-effect sensor IC provides
users with an accurate, low-cost solution for non-contact
linear and angular position sensing. With its I2C interface,
the ALS31300 provides convenient access to angle and
linear information from multiple sensors on a single bus (see
Figure 1).
Examples listed in this application note make use of the
“Teensy” 3.2 microcontroller (https://www.pjrc.com/teensy/
teensy31.html) and Arduino (https://www.arduino.cc/) soft-

ware environment. While this document focuses on imple-
mentation using the Teensy 3.2, the practices and example
code translate directly to other Arduino boards.

I2C Overview
The I2C bus is a synchronous, two-wire serial communica-
tion protocol which provides a full-duplex interface between
two or more devices. The bus specifies two logic signals:
1. Serial Clock Line (SCL) output by the Master.
2. Serial Data Line (SDA) output by either the Master or

the Slave.
The block diagram shown below in Figure 1 illustrates the
I2C bus topology.

I2C
Master

I2C
Slave

(ALS31300)

I2C
Slave

I2C
Slave

SCL
SDA

VDD VDD

RPRP

SCL
SDA

SCL
SDA

SCL
SDA

Figure 1: I2C bus diagram showing Master and
Slave devices

https://registration.allegromicro.com/login
https://registration.allegromicro.com/login
https://www.pjrc.com/teensy/teensy31.html
https://www.pjrc.com/teensy/teensy31.html
https://www.arduino.cc/

2
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

tSU(STA) tSU(DAT)

tLOW

tSU(STO)tHD(STA) tHD(DAT)

tHIGH

tBUF

SDA

SCL

Figure 2: I2C Input and Output Timing Diagram

Data Transmission
The transmission of data over I2C is composed of several steps
outlined in the sequence below.
1. Start Condition: Defined by a negative edge of the SDA line,

initiated by the Master, while SCL is high.
2. Address Cycle: 7-bit Slave address, plus 1 bit to indicate

write (0) or read (1), followed by an Acknowledge bit.
3. Data Cycles: Reading or writing 8 bits of data, followed by

an Acknowledge bit. This cycle can be repeated for multiple
bytes of data transfer. The first data byte on a write could be
the register address. See the following sections for further
information.

4. Stop Condition: Defined by a positive edge on the SDA line,
while SCL is high.

Except to indicate Start or Stop conditions, SDA must remain
stable while the clock signal is high. SDA may only change states
while SCL is low. It is acceptable for a Start or Stop condition to
occur at any time during the data transfer. The ALS31300 will
always respond to a Read or Write request by resetting the data
transfer sequence.
The clock signal SCL is generated by the Master, while the SDA
line functions as either an input or open-drain output, depending
on the direction of data transfer. Timing of the I2C bus is sum-
marized in the timing diagram in Figure 2. Signal references
and definitions of these names can be found in the ALS31300
datasheet.

I2C Bus Speeds
Common I2C bus speeds are 100 kbps standard mode and the
10 kbps low-speed mode, but arbitrarily low clock frequencies
are also allowed. Recent revisions of the I2C protocol can host
more nodes and run at faster speeds including 400 kbps fast mode
and 1 Mbps fast mode plus (Fm+) which are all supported by the
ALS31300. Note the spec outlines an additional 3.4 Mbps high-
speed mode that is not supported by ALS31300.

Implementation of I2C with the ALS31300
The ALS31300 may only operate as a Slave I2C device, therefore
it cannot initiate any transactions on the I2C bus.
The ALS31300 will always respond to a Read or Write request by
resetting the data transfer sequence. The state of the Read/Write
bit is set low (0) to indicate a Write cycle and set high (1) to
indicate a Read cycle. The Master monitors for an Acknowledge

bit to confirm the Slave device (ALS31300) is responding to the
address byte sent by the Master. When the ALS31300 decodes
the 7-bit Slave address as valid, it responds by pulling SDA low
during the ninth clock cycle. When a data write is requested by
the Master, the ALS31300 pulls SDA low during the clock cycle,
following the data byte to indicate that the data has been suc-
cessfully received. After sending either an address byte or a data
byte, the Master must release the SDA line before the ninth clock
cycle, allowing the handshake process to occur.

The default slave address for the ALS31300 is 110xxxx, where
the four LSB bits are set by applying different voltages to the
address pins ADR0 and ADR1. Both address pins have been
set to ground for this demonstration as shown by the schematic
in Figure 11. For information on selecting other I2C Slave
addresses, refer to the ALS31300 datasheet. With both pins
grounded, the default I2C Slave address is 96.

3
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Write Cycle Overview
The write cycle to access registers on the ALS31300 are outlined
in the sequence below.

1. Master initiates Start Condition
2. Master sends 7-bit slave address and the write bit (0)
3. Master waits for ACK from ALS31300
4. Master sends 8-bit register address
5. Master waits for ACK from ALS31300
6. Master sends 31:24 bits of data

7. Master waits for ACK from ALS31300
8. Master sends 23:16 bits of data
9. Master waits for ACK from ALS31300
10. Master sends 15:8 bits of data
11. Master waits for ACK from ALS31300
12. Master sends 7:0 bits of data
13. Master waits for ACK from ALS31300
14. Master initiates Stop Condition
The I2C write sequence is further illustrated in the timing dia-
grams below in Figure 3.

ALS31300 (Slave)Acknowledge

ALS31300 (Slave)Acknowledge

ALS31300 (Slave)Acknowledge

ALS31300 (Slave)Acknowledge

ALS31300 (Slave)Acknowledge

ALS31300 (Slave)Acknowledge

Write bit

Write bit

Slave Address

Register Data1

Start Register Address

Register Data2

Register Data0

Register Data3

SDA

SDA

SCL

SCL

A6

D6

A5

D5

A4

D4

A3

D3

A2

D2

A1

D1

A0

D0

W AK

AK

D7

D7D7

D6

D6

D5

D5

D4

D4

D3

D3

D2

D2

D1

D1

D0

D0

AK

AK

D7

D7

D6

D6

D5

D5

D4

D4

D3

D3

D2

D2

D1

D1

D0

D0

AK

AK

Stop

. . .

. . .

. . .

. . .

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4

5

5

5

5

5

5

6

6

6

6

6

6

7

7

7

7

7

7

8

8

8

8

8

8

9

9

9

9

9

9

Figure 3: I2C Write Timing Diagram

Customer Write Access
An access code must be sent to the device prior to writing any of
the volatile registers or EEPROM in the ALS31300. If customer
access mode is not enabled, then no writes to the device are
allowed. The only exception to this rule is the SLEEP bit, which
can be written regardless of the access mode. Furthermore, any
register or EEPROM location can be read at any time regardless
of the access mode.

To enter customer access mode, an access command must be

sent via the I2C interface. The command consists of a serial write
operation with the address and data values shown in Table 1.
There is no time limit for when the code may be entered. Once
the customer access mode is entered, it is not possible to change
access modes without powercycling the device.

Table 1: Customer Access Code
Access Mode Address Data

Customer Access 0x35 0x2C413534

4
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Read Cycle Overview
The read cycle to access registers on ALS31300 is outlined in the
sequence below.

1. Master initiates Start Condition
2. Master sends 7-bit slave address and the write bit (0)
3. Master waits for ACK from ALS31300
4. Master sends 8-bit register address
5. Master waits for ACK from ALS31300
6. Initiate a Start Condition. This time it is referred to as a Re-

start Condition
7. Master sends 7-bit slave address and the read bit (1)

8. Master waits for ACK from ALS31300
9. Master receives 31:24 bits of data
10. Master sends ACK to ALS31300
11. Master receives 23:16 bits of data
12. Master sends ACK to ALS31300
13. Master receives 15:8 bits of data
14. Master sends ACK to ALS31300
15. Master receives 7:0 bits of data
16. Master sends NACK to ALS31300
17. Master initiates Stop Condition
The I2C read sequence is further illustrated in the timing dia-
grams below in Figure 4.

. . .

. . .

1

1

1

1

12

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

9

9

9

9

1

ALS31300 (Slave)Acknowledge

ALS31300 (Slave)Acknowledge

ALS31300 (Slave)Acknowledge

ALS31300 (Slave)Acknowledge

Read bit

Read bit

Master Restart

Slave Address

Slave Address

Start

SDA

SDA

SCL

SCL

Register Address

Register Data

A6

D7

A5

D6

A4

D5

A3

D4

A2

D3

A1

D2

A0

D1

R

D0

AK

AK

1 112 223 334 445 556 667 778 889 99

ALS31300 (Slave) Acknowledge ALS31300 (Slave) Acknowledge Master Non–Acknowledge

Register Data1 Register Data2 Register Data3

SDA

SCL

Stop

D7 D7 D7D6 D6 D6D5 D5 D5D4 D4 D4D3 D3 D3D2 D2 D2D1 D1 D1D0 D0 D0AK AK NAK

D7

D7

D6

D6

D5

D5

D4

D4

D3

D3

D2

D2

D1

D1

D0

D0

AK

AK

. . .

. . .

Figure 4: I2C Read Timing Diagram

The timing diagram in Figure 4 shows the entire contents
(bits 31:0) of a single register location being transmitted. Option-
ally, the I2C Master may choose to replace the NACK with an
ACK instead, which allows the read sequence to continue. This
case will result in the transfer of contents (bits 31:24) from the
following register, address + 1. The master can then continue
acknowledging, or issue the not-acknowledge (NACK) or stop
after any byte to stop receiving data.

Note that only the initial register address is required for reads,
allowing for faster data retrieval. However, this restricts data
retrieval to sequential registers when using a single read com-
mand. When the Master provides a not-acknowledge bit and stop
bit, the ALS31300 stops sending data. If non-sequential registers
are to be read, separate read commands must be sent.

5
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

I2C Readback Modes for X, Y, Z and
Temperature Data

The ALS31300 I2C controller has several modes to make the
process of repeatedly polling X, Y, Z and Temperature data con-
venient. These options include Single Mode, Fast Loop Mode and
Full Loop Mode.

Single Mode
A single write or read command to any register—this is the
default mode and is best suited for setting fields and reading
static registers. If desired, this mode can be used to read X, Y, Z
and Temperature data in a typical serial fashion, but fast or full
loop read modes are recommended for high-speed data retrieval.

Fast Loop Mode
Fast Loop Mode offers continuous reading of X, Y, Z and
temperature values, but is limited to the upper 8 bits of X, Y, Z
and upper 6 bits of Temperature. This mode is intended to be a
time-efficient way of reading data from the IC at the expense
of truncating resolution. The flow chart in Figure 5 depicts Fast
Loop Mode.

X MSB Y MSB Z MSB T MSB

X MSB Y MSB Z MSB T MSB

X MSB Y MSB Z MSB T MSB

Address 0x28

Address 0x28

Address 0x28

ACK ACK ACK

ACK ACK ACK

ACK ACK ACK

ALS31300 updates internal registers

ALS31300 updates internal registers

Figure 5: Fast Loop Mode

Full Loop Mode
Full Loop Mode provides continuous reads of X, Y, Z and
Temperature data with full, 12 bit resolution. This is the recom-
mended mode for users wanting a higher data rate for X, Y, Z
and Temperature with full resolution. The flow chart in Figure 6
depicts Full Loop Mode.

X MSB Y MSB Z MSB T MSB

X LSB Y LSB Z LSB T LSB

X MSB Y MSB Z MSB T MSB

Address 0x28

Address 0x29

Address 0x28

ACK ACK ACK

ACK ACK ACK

ACK ACK ACK

ALS31300 updates internal registers

X LSB Y LSB Z LSB T LSB

ACK ACK ACK

Address 0x29

X MSB Y MSB Z MSB T MSB

ACK ACK ACK

ALS31300 updates internal registers

Address 0x28

Figure 6: Full Loop Mode
The Looping modes are further described below in Table 2.

Table 2: ALS31300 Looping Read Modes
Code (Binary) Mode Description

00 Single No Looping. Similar to Default I2C.

01 Fast Loop X, Y, Z and Temperature fields are
looped. 8 MSBs for X, Y, and Z; 6
MSBs for Temperature are looped.

10 Full Loop X, Y, Z and Temperature fields are
looped. Full, 12-bit resolution fields

are looped.

11 Single Same as code 0.

To set the read loop mode, set bits 3:2 at address 0x27 to the
desired code value per Table 2.

6
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Magnetic Field Strength Registers
The magnetic field strength registers contain data that is propor-
tional to the measured magnetic field in each of the three axes as
seen by the ALS31300. The register addresses and bit fields for
X, Y, and Z magnetic data are described in Table 3. The orienta-
tions of X, Y and Z Axes are defined in Figure 7.
The MSBs and LSBs of each axis must be concatenated to
resolve full 12-bit magnetic field data. Refer to Appendix A for
example code of various techniques to poll and concatenate the
magnetic data from ALS31300.

Table 3: Magnetic Field Strength Registers
Address Bits Name Description R/W

0x28

31:24 X Axis MSBs 8 bit signal proportional to upper 8 bits of field strength in X direction. R

23:16 Y Axis MSBs 8 bit signal proportional to upper 8 bits of field strength in Y direction. R

15:8 Z Axis MSBs 8 bit signal proportional to upper 8 bits of field strength in Z direction. R

0x29

19:16 X Axis LSBs 4 bit signal proportional to lower 4 bits of field strength in X direction. R

15:12 Y Axis LSBs 4 bit signal proportional to lower 4 bits of field strength in Y direction. R

11:8 Z Axis LSBs 4 bit signal proportional to lower 4 bits of field strength in Z direction. R

Z

Y

X

Pin 1
Z

Y

X

Figure 7: Magnetic Axes of ALS31300 DFN Package
(left) and ALS31313 TSSOP Package (right)

(not to scale)

Temperature Sensor Registers
Temperature Registers of ALS31300 are described below in Table 5.

Table 4: Temperature Registers
Address Bits Name Description R/W

0x28 5:0 Temperature
MSBs

6 bit signal proportional to
upper 6 bits of temperature. R

0x29 5:0 Temperature
LSBs

6 bit signal proportional to
lower 6 bits of temperature. R

Calculating Measured Field
For this example the full-scale range of ALS31300 is 500 gauss,
giving a sensitivity of 4 LSB/gauss.
The process begins with a full 8 byte read of MSB and LSB reg-
isters to construct a 12 bit, 2’s complement signed value. All data
must be read in a single 8 byte read when combining registers,
or the result will be the combination of two separate samples in
time. The 12 bits of data are combined per Table 5.

Table 5: MSB and LSB Combination Data
BIT 11 10 9 8 7 6 5 4 3 2 1 0

DATA MSB Data LSB Data

Assume a full 8 byte read returns the following binary data for a
single axis:

MSB = 1100_0000
LSB = 0110.

The combined data {MSB; LSB} = 1100_0000_0110. The
decimal equivalent = –1018, which can be converted to gauss by
dividing by the device sensitivity (4 LSB/gauss).

gauss = –1018 LSB ÷ 4 LSB⁄G = –254 gauss

7
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Calculating Angle Using Two Axes
The angle of an applied field can be calculated using magnetic
data from two axes of the ALS31300 and a four quadrant arc tan-
gent function. For this example, a disc magnet is magnetized dia-
metrically. The drawings in Figure 8 show reference orientations
of puck magnets and their poles compared to the X, Y, and Z axes
of the ALS31300. In the left orientation, the magnet is rotating
around the Z axis, as indicated by the white arrow, while sens-
ing magnetics with X and Y. In the orientation on the right, the
magnet is rotated about the Y axis, while using X and Z channels
to sense. The third orientation can be used with a magnet rotating
around the X axis and sensing with Y and Z.

Z
Y

X

Pin 1Z
Y

X

Figure 8: Diametric magnets and signal axes of the
ALS31300 (top) and ALS31313 (bottom)

Standard inverse tangent functions, i.e. tan()-1, return angle val-
ues ranging from –90° to 90°. For this application, it is important
to use a four quadrant arc tangent function to return an angle
from –180° to 180°. This function also avoids issues with divid-
ing by 0. Four quadrant inverse tangent functions are listed in
Table 6.

Table 6: Four Quadrant Arc Tan Function Calls
Program Function Description

MATLAB
atan2(Y,X) 4 quadrant tan-1. Result in radians.

atan2d(Y,X) 4 quadrant tan-1. Result in degrees.

ARDUINO
atan2(Y,X) 4 quadrant tan-1. Returns double.

atan2f(Y,X) 4 quadrant tan-1. Returns float.

C# Atan2(Y,X) 4 quadrant tan-1. Returns double.

Refer to Appendix A for full Arduino source code on calculating

angle for XY, XZ, and YZ axes combinations.
The conversion process can be summarized into 3 major steps,
which are listed below and identified on the scope plot in Figure 9.
“Single” mode (Table 2) is used to simplify this example.
1. Read request is initiated by the Master.
2. Transmission of 8 bytes of data from the Slave.
3. Conversion of magnetic vector data to an angle value.
The read request (box 1) consists of a write to the device indicat-
ing which registers will be read. The device responds (box 2)
with 8 bytes of data, (8 MSB of X, Y, Z and 6 MSB of tempera-
ture, followed by 4 LSB of X, Y, Z and 6 MSB of temperature).

Figure 9: I2C read of 8 data bytes in No loop mode.

Registers 0x28 and 0x29.

Angle Calculation Timing
The total time to complete an angle calculation using the
ALS31300 will be application specific, but predominantly domi-
nated by the processing abilities and speed of the user’s micro-
controller. Other factors include the loop mode of the ALS31300
(Table 2) and communication frequency of the I2C interface.
Timing examples in this document assume a Teensy 3.2 micro-
controller running at 72 MHz and configured I2C communication
speed of 1 MHz (Fast Mode+). Note that the Teensy 3.2 Fast
Mode+ I2C mode operates around 720 kHz.
The example in Figure 9 is a simple way to read data from the
ALS31300, but it is not the fastest. The overhead of initiating a
read (Box 1 in Figure 9) can be eliminated after the first request
through the use of loop modes on the ALS31300.
The scope plot in Figure 10 shows the angle conversion flow
with ALS31300 set in Full Loop Mode. The boxes 1, 2, and 3 still
correspond to the same steps from Figure 9.

8
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Figure 10: I2C read of 8 data bytes in Full Loop Mode.
Registers 0x28 and 0x29.

Notice that box 1 occurs only once, but is slightly longer than
the No Loop example in Figure 9. In Full Loop Mode, the read
request consists of a write to the device indicating which register
will be read, followed by a read/write to set full loop mode. Refer
to full source code in Appendix A on how to implement no loop,
fast loop and full loop read modes.
The repeated pause in box 3 shows the time it takes Teensy 3.2
microcontroller to perform the atan2f(x,y) function. The average
duration of the atan2f(x,y) function on the Teensy 3.2 at 72 MHz
is 30 µs, while the transmit time of 8 data bytes is 120 µs. Using
the Teensy 3.2 and ALS31300 in Full Loop Mode, a fresh angle
value can be calculated every 150 µs.

Application Schematics
Refer to the image in Figure 11 showing the application sche-
matic used for the ALS31300 throughout this document.

VCC

ADR0

GND

NC TEST

ADR1

SDA

SCL
8

7

6

5

1

2

3

4

C1
100 nF

R3
10 kΩ

INT

U1

3.3 V

3.3 V 3.3 V

R1
10 kΩ

R2
10 kΩ

TPSCL

TPSDA

SCL

SDA

3.3 V

ALS31300

Figure 11: Application Schematic for ALS31300
Supporting circuitry for the Teensy 3.2 microcontroller is shown

in the schematic in Figure 12.

Arduino
Teensy 3.2,
with pins

28
27
26
25
24
23
22
21
20
19
18
17
16
15

12 DIN
11 DOUT

10 TX2 CS
9 RX2 CS
8 TX3 DIN

7 RX3 DOUT
6

5 TX1
4 RX
3 RX

2
1 TX1
0 RX1

GND

13 (LED)
14 A0
15 A1
16 A2
17 A3
18 A4
19 A5
20 A6
21 A7
22 A8
23 A9
3.3 V Out
AGND
(3.6 to 6.0 V)

SCL
SDA

INT

X1
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Figure 12: Teensy 3.2 Application Schematic
Refer to the nets labeled “SDA” and “SCL” in Figure 11 and
Figure 12 indicating these connections between the two schemat-
ics. Note, the pin locations of SDA and SCL on the Teensy micro
are user-selectable, but must be declared in software. Refer to
the source code in Appendix A where the SDA and SCL pins are
declared.

Conclusion
The ALS31300 and ALS31313 are a highly versatile, micropower
3D Hall-effect sensor ICs. The IC can be used for multi-axis
linear position, or angular position sensing applications, and can
be configured for operation in high resolution (12 bit) or medium
resolution (8 bit) mode. The I2C bus is highly configurable, and
can operate at bus speeds from 1 Mbps down to < 10 kbps, with
a pullup voltage range of 1.8 to 3.3 V. The IC also includes a
temperature sensor that can read over the I2C interface.
The Arduino .ino sketch file used with this application note
is available on Allegro’s Software Portal. Register for the
“ALS31300” device to view the source code.
The ALS31300 datasheet is available at https://www.allegromi-
cro.com/en/products/sense/linear-and-angular-position/linear-
position-sensor-ics/als31300.
The ALS31313 datasheet is available at https://www.allegromi-
cro.com/en/products/sense/linear-and-angular-position/linear-
position-sensor-ics/als31313.

https://registration.allegromicro.com/login
https://www.allegromicro.com/en/products/sense/linear-and-angular-position/linear-position-sensor-ics/als31300
https://www.allegromicro.com/en/products/sense/linear-and-angular-position/linear-position-sensor-ics/als31300
https://www.allegromicro.com/en/products/sense/linear-and-angular-position/linear-position-sensor-ics/als31300
https://www.allegromicro.com/en/products/sense/linear-and-angular-position/linear-position-sensor-ics/als31313
https://www.allegromicro.com/en/products/sense/linear-and-angular-position/linear-position-sensor-ics/als31313
https://www.allegromicro.com/en/products/sense/linear-and-angular-position/linear-position-sensor-ics/als31313

9
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

APPENDIX A: Full Arduino Source Code for ALS31300 and Teensy 3.2
The snippet below shows full Arduino source code used alongside this application. Example functions include I2C initialization, read-
ing from the ALS31300 in single, fast, and full loop modes, writing data to the ALS31300 using I2C and calculating angle and gauss
using magnetic data from the ALS31300.
The full .ino Arduino sketch is available on Allegro Microsystem’s Software portal under the ALS31300 device tab. To register with
Allegro’s software portal and view the ALS31300 source code, visit https://registration.allegromicro.com/login.
/*
 * Example source code for an Arduino to show
 * how to communicate with an Allegro ALS31300
 *
 * Written by K. Robert Bate, Allegro MicroSystems, LLC.
 *
 * ALS31300Demo is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 */
#include <Wire.h>
#include <math.h>

// Return values of endTransmission in the Wire library
#define kNOERROR 0
#define kDATATOOLONGERROR 1
#define kRECEIVEDNACKONADDRESSERROR 2
#define kRECEIVEDNACKONDATAERROR 3
#define kOTHERERROR 4

// led blinking support
bool ledState = false;
int ledPin = 13;
unsigned long nextTime;

int deviceAddress = 96; // Address of the ALS31300
// SCL Pin = 19
// SDA Pin = 18

//
// setup
//
// Initializes the Wire library for I2C communications,
// Serial for displaying the results and error messages,
// the hardware and variables to blink the LED,
// and sets the ALS31300 into customer access mode.
//
void setup()
{
 // Initialize the I2C communication library
 Wire.begin();
 Wire.setClock(1000000); // 1 MHz

 // Initialize the serial port
 Serial.begin(115200);
 // If using a Arduino with USB built in, uncomment the next line,
 // this allows the errors in Setup to be seen
 // while (!Serial);

 // Setup hardware and variables for code which blinks the LED
 nextTime = millis();
 pinMode(ledPin, OUTPUT);

https://registration.allegromicro.com/login

10
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

 digitalWrite(ledPin, LOW);

 // Enter customer access mode on the ALS31300
 uint16_t error = write(deviceAddress, 0x24, 0x2C413534);

 if (error != kNOERROR)
 {
 Serial.print(“Error while trying to enter customer access mode. error = “);
 Serial.println(error);
 }
}

// loop
//
// Every half second, read the ADCs of the ALS31300 and display
// the values and toggle the state of the LED.
//
void loop()
{
 // only perform the reading of the ALS31300 and the
 // toggling the state of the LED every half second
 if (nextTime < millis())
 {
 nextTime = millis() + 500L;

 // Uncomment which reading style is desired
 readALS31300ADC(deviceAddress);
 //readALS31300ADC_FastLoop(deviceAddress);
 //readALS31300ADC_FullLoop(deviceAddress);

 // Blink the LED
 ledState = !ledState;
 digitalWrite(ledPin, ledState);
 }
}

//
// readALS31300ADC
//
// Read the X, Y, Z values from Register 0x28 and 0x29
// eight times. No loop mode is used.
//
void readALS31300ADC(int busAddress)
{
 uint32_t value0x27;

 // Read the register the I2C loop mode is in
 uint16_t error = read(busAddress, 0x27, value0x27);
 if (error != kNOERROR)
 {
 Serial.print(“Unable to read the ALS31300. error = “);
 Serial.println(error);
 }

 // I2C loop mode is in bits 2 and 3 so mask them out
 // and set them to the no loop mode
 value0x27 = (value0x27 & 0xFFFFFFF3) | (0x0 << 2);

 // Write the new values to the register the I2C loop mode is in
 error = write(busAddress, 0x27, value0x27);

11
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

 if (error != kNOERROR)
 {
 Serial.print(“Unable to read the ALS31300. error = “);
 Serial.println(error);
 }

 for (int count = 0; count < 8; ++count)
 {
 // Write the address that is going to be read from the ALS31300
 Wire.beginTransmission(busAddress);
 Wire.write(0x28);
 uint16_t error = Wire.endTransmission(false);

 // The ALS31300 accepted the address
 if (error == kNOERROR)
 {
 // Start the read and request 8 bytes
 // which are the contents of register 0x28 and 0x29
 Wire.requestFrom(busAddress, 8);

 // Read the first 4 bytes which are the contents of register 0x28
 uint32_t value0x28 = Wire.read() << 24;
 value0x28 += Wire.read() << 16;
 value0x28 += Wire.read() << 8;
 value0x28 += Wire.read();

 // Read the next 4 bytes which are the contents of register 0x29
 uint32_t value0x29 = Wire.read() << 24;
 value0x29 += Wire.read() << 16;
 value0x29 += Wire.read() << 8;
 value0x29 += Wire.read();

 // Take the most significant byte of each axis from register 0x28 and combine it with the least
 // significant 4 bits of each axis from register 0x29, then sign extend the 12th bit.
 int x = SignExtendBitfield(((value0x28 >> 20) & 0x0FF0) | ((value0x29 >> 16) & 0x0F), 12);
 int y = SignExtendBitfield(((value0x28 >> 12) & 0x0FF0) | ((value0x29 >> 12) & 0x0F), 12);
 int z = SignExtendBitfield(((value0x28 >> 4) & 0x0FF0) | ((value0x29 >> 8) & 0x0F), 12);

 // Display the values of x, y and z
 Serial.print(“Count, X, Y, Z = “);
 Serial.print(count);
 Serial.print(“, “);
 Serial.print(x);
 Serial.print(“, “);
 Serial.print(y);
 Serial.print(“, “);
 Serial.println(z);

 // Look at the datasheet for the sensitivity of the part used.
 // In this case, full scale range is 500 gauss, other sensitivities
 // are 1000 gauss and 2000 gauss.
 // Sensitivity of 500 gauss = 4.0 lsb/g
 // Sensitivity of 1000 gauss = 2.0 lsb/g
 // Sensitivity of 2000 gauss = 1.0 lsb/g

 float mx = (float)x / 4.0;
 float my = (float)y / 4.0;
 float mz = (float)z / 4.0;

 Serial.print(“MX, MY, MZ = “);

12
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

 Serial.print(mx);
 Serial.print(“, “);
 Serial.print(my);
 Serial.print(“, “);
 Serial.print(mz);
 Serial.println(“ Gauss”);

 // Convert the X, Y and Z values into radians
 float rx = (float)x / 4096.0 * M_TWOPI;
 float ry = (float)y / 4096.0 * M_TWOPI;
 float rz = (float)z / 4096.0 * M_TWOPI;

 // Use a four quadrant Arc Tan to convert 2
 // axis to an angle (which is in radians) then
 // convert the angle from radians to degrees
 // for display.
 float angleXY = atan2f(ry, rx) * 180.0 / M_PI;
 float angleXZ = atan2f(rz, rx) * 180.0 / M_PI;
 float angleYZ = atan2f(rz, ry) * 180.0 / M_PI;

 Serial.print(“angleXY, angleXZ, angleYZ = “);
 Serial.print(angleXY);
 Serial.print(“, “);
 Serial.print(angleXZ);
 Serial.print(“, “);
 Serial.print(angleYZ);
 Serial.println(“ Degrees”);
 }
 else
 {
 Serial.print(“Unable to read the ALS31300. error = “);
 Serial.println(error);
 break;
 }
 }
}

//
// readALS31300ADC_FastLoop
//
// Read the X, Y, Z 8 bit values from Register 0x28
// eight times quickly using the fast loop mode.
//
void readALS31300ADC_FastLoop(int busAddress)
{
 uint32_t value0x27;

 // Read the register the I2C loop mode is in
 uint16_t error = read(busAddress, 0x27, value0x27);
 if (error != kNOERROR)
 {
 Serial.print(“Unable to read the ALS31300. error = “);
 Serial.println(error);
 }

 // I2C loop mode is in bits 2 and 3 so mask them out
 // and set them to the fast loop mode
 value0x27 = (value0x27 & 0xFFFFFFF3) | (0x1 << 2);

 // Write the new values to the register the I2C loop mode is in

13
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

 error = write(busAddress, 0x27, value0x27);
 if (error != kNOERROR)
 {
 Serial.print(“Unable to read the ALS31300. error = “);
 Serial.println(error);
 }

 // Write the register address that is going to be read from the ALS31300 (0x28)
 Wire.beginTransmission(busAddress);
 Wire.write(0x28);
 error = Wire.endTransmission(false);

 // The ALS31300 accepted the address
 if (error == kNOERROR)
 {
 int x;
 int y;
 int z;

 // Eight times is arbitrary, there is no limit. What is being demonstrated
 // is that once the address is set to 0x28, all reads will be from 0x28 until the
 // register address is changed or the loop mode is changed.
 for (int count = 0; count < 8; ++count)
 {
 // Start the read and request 4 bytes
 // which is the contents of register 0x28
 Wire.requestFrom(busAddress, 4);

 // Read the first 4 bytes which are the contents of register 0x28
 // and sign extend the 8th bit
 x = SignExtendBitfield(Wire.read(), 8);
 y = SignExtendBitfield(Wire.read(), 8);
 z = SignExtendBitfield(Wire.read(), 8);
 Wire.read(); // Temperature and flags not used

 // Display the values of x, y and z
 Serial.print(“Count, X, Y, Z = “);
 Serial.print(count);
 Serial.print(“, “);
 Serial.print(x);
 Serial.print(“, “);
 Serial.print(y);
 Serial.print(“, “);
 Serial.println(z);

 // Convert the X, Y and Z values into radians
 float rx = (float)x / 256.0 * M_TWOPI;
 float ry = (float)y / 256.0 * M_TWOPI;
 float rz = (float)z / 256.0 * M_TWOPI;

 // Use a four quadrant Arc Tan to convert 2
 // axis to an angle (which is in radians) then
 // convert the angle from radians to degrees
 // for display.
 float angleXY = atan2f(ry, rx) * 180.0 / M_PI;
 float angleXZ = atan2f(rz, rx) * 180.0 / M_PI;
 float angleYZ = atan2f(rz, ry) * 180.0 / M_PI;

 Serial.print(“angleXY, angleXZ, angleYZ = “);
 Serial.print(angleXY);

14
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

 Serial.print(“, “);
 Serial.print(angleXZ);
 Serial.print(“, “);
 Serial.print(angleYZ);
 Serial.println(“ Degrees”);
 }
 }
 else
 {
 Serial.print(“Unable to read the ALS31300. error = “);
 Serial.println(error);
 }
}

//
// readALS31300ADC_FullLoop
//
// Read the X, Y, Z 12 bit values from Register 0x28 and 0x29
// eight times quickly using the full loop mode.
//
void readALS31300ADC_FullLoop(int busAddress)
{
 uint32_t value0x27;

 // Read the register the I2C loop mode is in
 uint16_t error = read(busAddress, 0x27, value0x27);
 if (error != kNOERROR)
 {
 Serial.print(“Unable to read the ALS31300. error = “);
 Serial.println(error);
 }

 // I2C loop mode is in bits 2 and 3 so mask them out
 // and set them to the full loop mode
 value0x27 = (value0x27 & 0xFFFFFFF3) | (0x2 << 2);

 // Write the new values to the register the I2C loop mode is in
 error = write(busAddress, 0x27, value0x27);
 if (error != kNOERROR)
 {
 Serial.print(“Unable to read the ALS31300. error = “);
 Serial.println(error);
 }

 // Write the address that is going to be read from the ALS31300
 Wire.beginTransmission(busAddress);
 Wire.write(0x28);
 error = Wire.endTransmission(false);

 // The ALS31300 accepted the address
 if (error == kNOERROR)
 {
 int x;
 int y;
 int z;

 // Eight times is arbitrary, there is no limit. What is being demonstrated
 // is that once the address is set to 0x28, the first four bytes read will be from 0x28
 // and the next four will be from 0x29 after that it starts all over at 0x28
 // until the register address is changed or the loop mode is changed.

15
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

 for (int count = 0; count < 8; ++count)
 {
 // Start the read and request 8 bytes
 // which is the contents of register 0x28 and 0x29
 Wire.requestFrom(busAddress, 8);

 // Read the first 4 bytes which are the contents of register 0x28
 x = Wire.read() << 4;
 y = Wire.read() << 4;
 z = Wire.read() << 4;
 Wire.read(); // Temperature and flags not used

 // Read the next 4 bytes which are the contents of register 0x29
 Wire.read(); // Upper byte not used
 x |= Wire.read() & 0x0F;
 byte d = Wire.read();
 y |= (d >> 4) & 0x0F;
 z |= d & 0x0F;
 Wire.read(); // Temperature not used

 // Sign extend the 12th bit for x, y and z.
 x = SignExtendBitfield((uint32_t)x, 12);
 y = SignExtendBitfield((uint32_t)y, 12);
 z = SignExtendBitfield((uint32_t)z, 12);

 // Display the values of x, y and z
 Serial.print(“Count, X, Y, Z = “);
 Serial.print(count);
 Serial.print(“, “);
 Serial.print(x);
 Serial.print(“, “);
 Serial.print(y);
 Serial.print(“, “);
 Serial.println(z);

 // Convert the X, Y and Z values into radians
 float rx = (float)x / 4096.0 * M_TWOPI;
 float ry = (float)y / 4096.0 * M_TWOPI;
 float rz = (float)z / 4096.0 * M_TWOPI;

 // Use a four quadrant Arc Tan to convert 2
 // axis to an angle (which is in radians) then
 // convert the angle from radians to degrees
 // for display.
 float angleXY = atan2f(ry, rx) * 180.0 / M_PI;
 float angleXZ = atan2f(rz, rx) * 180.0 / M_PI;
 float angleYZ = atan2f(rz, ry) * 180.0 / M_PI;

 Serial.print(“angleXY, angleXZ, angleYZ = “);
 Serial.print(angleXY);
 Serial.print(“, “);
 Serial.print(angleXZ);
 Serial.print(“, “);
 Serial.print(angleYZ);
 Serial.println(“ Degrees”);
 }
 }
 else
 {
 Serial.print(“Unable to read the ALS31300. error = “);

16
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

 Serial.println(error);
 }
}

//
// read
//
// Using I2C, read 32 bits of data from the address on the device at the bus address
//
uint16_t read(int busAddress, uint8_t address, uint32_t& value)
{
 // Write the address that is to be read to the device
 Wire.beginTransmission(busAddress);
 Wire.write(address);
 int error = Wire.endTransmission(false);

 // if the device accepted the address,
 // request 4 bytes from the device
 // and then read them, MSB first
 if (error == kNOERROR)
 {
 Wire.requestFrom(busAddress, 4);
 value = Wire.read() << 24;
 value += Wire.read() << 16;
 value += Wire.read() << 8;
 value += Wire.read();
 }

 return error;
}

//
// write
//
// Using I2C, write 32 bit data to an address to the device at the bus address
//
uint16_t write(int busAddress, uint8_t address, uint32_t value)
{
 // Write the address that is to be written to the device
 // and then the 4 bytes of data, MSB first
 Wire.beginTransmission(busAddress);
 Wire.write(address);
 Wire.write((byte)(value >> 24));
 Wire.write((byte)(value >> 16));
 Wire.write((byte)(value >> 8));
 Wire.write((byte)(value));
 return Wire.endTransmission();
}

//
// SignExtendBitfield
//
// Sign extend a right justified value
//
long SignExtendBitfield(uint32_t data, int width)
{
 long x = (long)data;
 long mask = 1L << (width - 1);

 if (width < 32)

17
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

 {
 x = x & ((1 << width) - 1); // make sure the upper bits are zero
 }

 return (long)((x ^ mask) - mask);
}

18
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

APPENDIX B: TEENSY PINOUT FLYER
The pinout flyer below ships with each Teensy 3.2. It is also available from PJRS at the following link: https://www.pjrc.com/teensy/
card7a_rev1.pdf.

Figure 13: Pinout Flyer for TEENSY 3.2

https://www.pjrc.com/teensy/card7a_rev1.pdf
https://www.pjrc.com/teensy/card7a_rev1.pdf

19
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

For the latest version of this document, visit our website:

www.allegromicro.com

Copyright 2024, Allegro MicroSystems.

The information contained in this document does not constitute any representation, warranty, assurance, guaranty, or inducement by Allegro to the
customer with respect to the subject matter of this document. The information being provided does not guarantee that a process based on this infor-
mation will be reliable, or that Allegro has explored all of the possible failure modes. It is the customer’s responsibility to do sufficient qualification
testing of the final product to ensure that it is reliable and meets all design requirements.

Copies of this document are considered uncontrolled documents.

Revision History
Number Date Description

– July 31, 2017 Initial release

1 August 8, 2018 Added ALS31313 part references; updated Customer Access Code address (page 3).

2 April 1, 2019 Updated Write Cycle Overview section (page 3) and Read Cycle Overview section (page 4).

3 April 10, 2020 Minor editorial updates

4 March 27, 2024 Fixed broken links (page 8)

http://www.allegromicro.com

