

Allegro 下一代大功率密度 CB 封装电流传感器的增强性能与特性

作者: Maxwell McNally, Allegro MicroSystems, LLC

摘要

本应用注释介绍 Allegro MicroSystems 新型大电流 ACS772 霍尔效应电流传感器集成电路(IC)的使用,并 概述其特性以及针对先前 Allegro 大电流传感器的改进。

介绍

ACS772 是 Allegro MicroSystems 长期生产的一系列大电流测量器件中的最新产品。ACS772 采用 Allegro 专有的 CB 封装,具有超高功率密度、高浪涌电流容量,并具有厂家编程选项,感应电流范围 50 - 250 A。CB 封装可以是通孔直接焊接到印刷电路板(PCB)上,并且该器件具有很高隔离度,无需使用光耦合器等昂贵的隔离技术。

ACS772 增强带宽 200 kHz, 比其前身 ACS770 高出约 80 kHz。ACS772 不仅能更快地响应电流瞬变,而且通过专有补偿技术,它还具有更高的精度和最小的寿命漂移。由于采用相同的引脚排列和器件操作方式,ACS772 可以直接插入替代 ACS770 和 ACS758 插座。

CB 封装和隔离

CB 封装的内部配备铁磁体集中器,将来自载流迹线的场引导到霍尔元件的敏感平面中。Figure 1 表示组成 CB 封装的不同组件。穿过引脚框的电流产生磁场,由集中器器引导到 IC。信号引脚从包覆成型封装伸出,以连接外部电路。

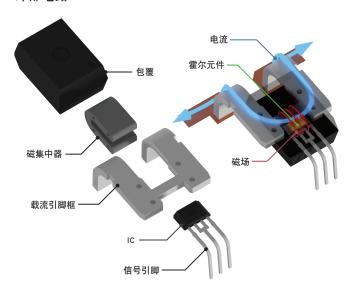


图1: CB 封装内部结构

霍尔效应电流传感器的本质决定了器件具备固有的隔离特性,这是因为载流引脚框架不需要以电气方式连接IC。封装内的塑料成型化合物还使IC和引脚框的信号引脚绝缘。CB 封装已通过 UL 规范 60950-1 认证,如相关数据表中所示,额定值为 4800 V_{RMS} 60 秒。

总输出误差与生命周期漂移

在可能的情况下,在应用内进行校准可能成本高昂,并且仅限于客户的线端生产系统。为此,Allegro 设计出 ACS772,它具有迄今为止所有 CB 电流传感器的最低寿命漂移。为了实现 ACS772 的最小寿命漂移,我们设计了指定总输出误差漂移的新方法。ACS772指定了包括寿命漂移的总输出误差,因此无需为标称误差指定添加漂移值。

ACS772 在室温下的总输出误差降低 0.9%,并且寿命漂移比 ACS770 低约 2%。下表 1比较了 ACS772 和 ACS770 总输出误差寿命值。值得注意的是,数据表中没有以这种方式指定 ACS770;为了便于比较,已对较新的规格进行了转换。

表1: ACS770 和 ACS772 总误差规格

		总输出误差			包括寿命漂移的总输出误差		
温度	DUT	最小值	典型值	最大值	最小值	典型值	最大值
25°C 至 150°C	770	-2.40%	±1.5%	2.40%	-4.30%	±2.1%	4.30%
	772	-1.50%	±0.9%	1.50%	-2.10%	±1.7%	2.10%
–40°C 至 25°C	770	-3.50%	±2%	3.50%	-5.40%	±2.6%	5.40%
	772	-3.50%	±1.7%	3.50%	-3.50%	±2.6%	3.50%

温度额定值

Allegro 电流传感器 IC 的最高结温 $(T_{J(MAX)})$ 为 165° C,所有 ACS772 器件均在 150° C 的环境温度 (T_A) 下进行测试。只要不违反最高结温规格,器件就可以在最高环境温度下安全工作。对于持续高电流应用中的器件, T_A 值会降级,因为预计阻性加热会使内部温度接近最大结温。如表 2 所述,这些温度代码直接出现在设备编号后面的部件名称中: ACS772LCB-050B-PFF-T.

表2: Allegro 温度代码

CB 温度代码	额定 T _A (°C)	电流感应 范围 (A)	生产测试温度 (°C)
L	-40 至 150	±100	150
K	-40 至 125	±150	150
Е	-40 至 85	±200	150

电源电压等级

Allegro 对 ACS772 进行了优化,并在生产中进行编程,工作电压为 5 V。ACS773 采用与 3.3 V 电源轨相同的方式进行优化。有关详细信息,请参阅 Allegro 网站的器件数据表。

ACS772 和 ACS773 系列拥有针对 5 V 和 3.3 V 电源优化的器件,可替代Allegro 的任何老款器件,包括 ACS758、ACS759和 ACS770。

欠压锁定

欠压锁定(UVLO)可防止 ACS772 在其优化电压范围之外工作;它还为系统提供有关电源电压降的诊断能力。为了使 ACS772 和 ACS770 正确加电,电压必须超过锁定阈值(V_{UVLOH}))并在预定时间((t_{UVLOD}) 内保持在该电平之上。如果器件未正确供电,输出将保持接地。此外,如果电源电压低于另一个阈值(V_{UVLOL})足够长(t_{UVLOE}),输出将接地,并且器件必须重新供电。0~V输出电压超出器件的预期范围,可能表示传感器在电源电压规格之外工作。这是针对 5~V 器件(ACS772)。

而 3.3 V ACS773 具有加电重置 (POR) 功能。这主要以相同的方式起作用,但在低于下限时没有计时器。器件立即关闭并进入高阻态。

成比例

ACS772/3 的比例输出根据电源电压的变化进行调整。由于 V_{CC} 的变化,基于与电流传感器 IC 相同电源电压的 ADC 应 用具有更小的测量误差。ACS758、ACS770 和 ACS772 的整 个高电流产品系列,具有可提供这种增强性能的比例输出。

2

带宽和响应时间

与之前型号的 120 kHz 带宽相比, ACS772/3 的带宽增加到 200 kHz。这样,器件能更快地响应电流瞬变,这在图 2 中突出显示,而响应时间参数的确切值在表 3 中进行比较。

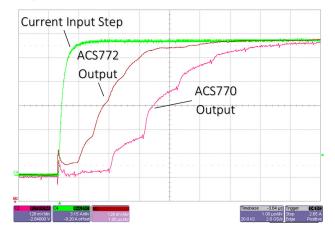


图2: ACS770 和 ACS772 的阶跃响应

表3: 响应时间比较

规格	上升时间 (µs)	传播延迟 (µs)	响应时间 (µs)
ACS772	2.4	1.2	2.5
ACS770	4.1	2.4	4.6
ACS758	3.0	1.0	4.0

噪声性能

可以预期,更高的带宽需要更高的噪声,但 ACS772 不仅具有更高的带宽,而且还具有与 ACS770 类似的噪声性能。表 4 下面比较了典型的噪声值,并计算了 ACS772 的200 kHz 和 120 kHz 滤波操作。

表4:噪声比较

部件号	噪声密度 (µA / √Hz)	带宽 (kHz)	RMS 噪声 (mA _{RMS})
ACS772	160	200	90
		120 ^[1]	70
ACS770	190	120	83
ACS758	90	120	37

[1] 过滤后与较低带宽的 ACS770 和 ACS758 器件进行比较。

图 3 非常明显的展示每个器件的噪声,其中对噪声密度进行了比较。所有这些器件的额定值都是 150A,并具有相同增益 13.33mV/A。

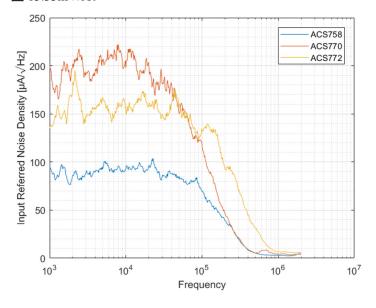


图3: ACS758、ACS770 和 ACS772 噪声比较

总结

采用 CB 封装的 Allegro 下一代 ACS772 和 ACS773 器件可在整个使用寿命内在较宽的工作温度范围内,提供更快的响应时间和更高的精度。这些传感器非常适合需要下一代改进的应用,并提供各种电流范围和电源电压,以满足任何应用需求。完全相同的封装和操作使 ACS772 和 ACS773 可以直接替代 Allegro ACS758、ACS759 和 ACS770 器件。

版本历史

编号	日期	说明
-	2018年4月4日	初始发布

版权所有©2018 Allegro MicroSystems, LLC

本文中所含的信息不构成 Allegro 就本文主题而对客户做出的任何表示、担保、确保、保证或诱导。本文所提供的信息并不保证基于此信息的流程的可靠性,亦不保证 Allegro 已探究了所有可能出现的故障模式。客户负责对最终产品进行充分的验证测试,以确保该产品是可靠的,并且符合所有设计要求。

有关此文档的最新版,请访问我们的网站:

www.allegromicro.com

