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Introduction
Magnetic angle sensors are often a good choice for fast, 
reliable, contactless measurement of the angular position 
of a system, especially in dirty environments where optical 
encoders may not be a good fit. 

Allegro MicroSystems offers a wide range of angle sensor 
ICs [1] for different applications. These sensor ICs can mea-
sure the angle of diametrically magnetized encoder magnets 
in a side-shaft or end-of-shaft setup, as shown in Figure 1. 
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Figure 1: Side-shaft measurement angle (left) and 
end-of-shaft angle measurement (right)

Measurement Errors
All Allegro angle sensor ICs are calibrated at final test in the 
factory using a homogenous magnetic field. This is done to 
minimize the native error of the sensor. However, especially 
in side-shaft applications, the magnetic field angle at the 
sensor transducer is not identical to the mechanical angle of 
the shaft that is to be measured. The main contributor to this 
difference is the shape of the magnetic field emitted from 
the encoder magnet. 

Other sources of mismatch between mechanical and mag-
netic field angle are magnet misalignment, magnet imper-
fections, remaining sensor inaccuracy and drift, and the 
presence of ferromagnetic materials. 

It can be concluded that all systems, and especially side-
shaft-systems, suffer from a mismatch between the encoder 
angle and the measured angle. A typical transfer curve for a 
side-shaft application can be seen in Figure 2. 
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Figure 2: Simulated sensor reading vs. encoder 
angle in a side-shaft setup

These measurement errors are called nonlinearities and can 
be compensated through a process called linearization.

Linearization
Some Allegro sensor ICs, such as the A1335, the AAS33001, 
and the AAS33051 have embedded logic that allows for the 
linearization of input data. This application note will explain 
how to use the linearization features of the AAS33001 and 
AAS33051. To simplify references to these parts, both will be 
referred to as AAS330x1 henceforth. 

This application note will:

• Explain the fundamentals of linearization

• Explain the AAS330x1 linearization features

• Show how to process measured data to calculate 
correction data

• Explain how to calculate the sensor parameters

• Show the accuracy after linearization
[1] Allegro Angle Position Sensor ICs, https://www.allegromicro.com/en/products/sense/

linear-and-angular-position/angular-position-sensor-ics

https://www.allegromicro.com/en/products/sense/linear-and-angular-position/angular-position-sensor-ics
https://www.allegromicro.com/en/products/sense/linear-and-angular-position/angular-position-sensor-ics
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Definitions
Encoder Angle

The angle reported by an accurate, high-resolution external 
encoder. 

Sensor Angle

The angle reported by the angle sensor IC. 

Angle Error

Angle error is the difference between the actual position of the 
magnet and the position of the magnet as measured by the angle 
sensor IC. This is calculated by subtracting the encoder angle 
from the sensor angle:

error = (α_sensor – α_encoder ) .
However, if the sensor angle is 359° and the encoder angle is 0°, 
the error should be –1° and not +359°. To wrap around any error 
outside of ±180°, the modulo operator can be used: 

error = mod[(α_sensor – α_encoder) + 180,360] – 180.
A sample plot of the angle error in a side-shaft application is 
given in Figure 3.

Maximum Absolute Angle Error

The maximum absolute angle error is the largest absolute differ-
ence between the actual position of the magnet and the position 
of the magnet as measured by the angle sensor IC over a full rota-
tion. In Figure 3, the maximum angle error is 21.46°, measured at 
an encoder angle of 56°. 
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Figure 3: Angle error compared to sensor output plot
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Goal of Linearization
The goal of linearization is to determine, store, and apply a func-
tion that minimizes the measured sensor angle error as com-
pared to the encoder angle value. This minimizes the difference 
between measured sensor angle and actual encoder angle. 
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Figure 4: The goal of linearization: getting from sensor 
angle to encoder angle

This goal can be achieved in different ways. Three common tech-
niques will be detailed in this applications note. 

The techniques presented depend on a single calibration phase 
(typically performed at the customer’s end-of-line test), after 
which a fixed correction function is applied. 

Prerequisites to Linearization
Prerequisites to linearization using the techniques detailed here 
are the following: 

• During production, known angles need to be applied to the 
sensor system.

• During production, sensor angles need to be read out.
• The system to be linearized needs a microcontroller, to which 

linearization information is written during the production 
process and which performs linearization in the application.

Limits to Linearization
Linearization using the methods described here has some limits:

• Sensor noise will not be corrected by linearization.
• Any drift of the sensor after calibration will not be corrected.
• Changes in the mechanical system after calibration will not 

be corrected by linearization. A common example is dynamic 
change of magnet position due to vibrations and torque.

• If the input positions during the calibration are not accurately 
recorded, the accuracy of the correction will be limited in the 
same way.
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Linearization Method
1. Data Recording

To generate the data needed for linearization, measure sensor out-
put [y0 … yn] at known encoder angles [x0 … xn]. These encoder 
angles do not need to be equidistant, although it is common to use 
equidistant angles. 

The recording of values is shown in Figure 5. 
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Figure 5: Data recording

2. Coordinate Transformation to Sensor Angle

As the correction function has to work based on the sensor data, 
the recorded data points should be transformed into the sensor 
coordinate system. This means that instead of expressing the 
sensor angle as function of the real angle, it is required to express 
the real angle as function of the sensor angle. Therefore, sensor 
angles [y'0 … y'n] are chosen, for which corresponding encoder 
angles [x'0 … x'n] need to be determined. To do this, a fit needs 
to be applied through the data points. This can be done through 
spline interpolation, as shown in Figure 6. 
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Figure 6: Coordinate transformation into sensor angles
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3. Correction Curve Calculation

In order to create a function that converts the angle measured at 
the sensor into the encoder angle, correction values need to be 
calculated. These correction values are calculated as [c0 … cn] = 
[x'0 … x'n] – [y'0 … y'n]. 
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Figure 7: Correction value calculation
In the end, these values describe a correction curve, c, which 
gives the correction values as a function of the sensor angle. Fig-
ure 8 shows a plot of the curve c over sensor angle.
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Figure 8: Correction curve

4. Correction Curve Application to Data

To apply the correction to a measured sensor data point, a cor-
rection value C for sensor data point Y needs to be calculated 
based on the correction curve c. This is graphically represented in 
Figure 9. 
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Figure 9: Finding value C = f(Y) on correction curve c
The correct angle value X is then determined as X = Y + C. This 
is graphically represented in Figure 10.
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Figure 10: Finding value X = Y + C using  
the correction curve
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Correction Curve Determination
The implementations in this document were implemented in 
MathWorks MATLAB™. As this is commercial software, licens-
ing costs apply to using it, which may hinder use in production 
environments. A free software alternative to MATLAB is GNU 
Octave, which is available under the GNU GPLv3 license free of 
charge. 

All functions used in this document are supported by both MAT-
LAB and GNU Octave. 

Sensor Output Capture

Initial data on the sensor angular output must be captured by 
the user. This is done by setting certain known angles, referred 
to as encoder angles in this document. Then the sensor angles 
are recorded. The sensor angles are the angles measured by the 
sensor. The number of points recorded can be more or less than 
the number of linear correction points. Recording more points, if 
possible, is always better. 

In general, recording at least 16 data points is enough for good 
correction performance in on-axis situations. In off-axis situa-
tions, at least 32 points are recommended. 

To apply piecewise linear correction with n segments (e.g. 32), 
recording at least n points will make good use of the available 
correction points. Recording about 2 × n points results in a nearly 
ideal performance. A real-life example of recorded points is given 
in Table 1. 

Table 1: Recorded encoder and output angles
Encoder 
Angle (°)

Output  
Angle (°)

Encoder 
Angle (°)

Output  
Angle (°)

0.00 266.31 180.00 97.12

11.25 278.61 191.25 111.45

22.50 290.39 202.50 124.98

33.75 301.99 213.75 137.46

45.00 312.45 225.00 148.62

56.25 323.00 236.25 158.82

67.50 332.75 247.50 167.96

78.75 342.69 258.75 176.48

90.00 352.79 270.00 184.48

101.25 3.16 281.25 192.92

112.50 14.24 292.50 201.27

123.75 26.02 303.75 210.50

135.00 38.94 315.00 220.43

146.25 52.91 326.25 230.98

157.50 67.15 337.50 242.31

168.75 82.18 348.75 254.36
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Figure 11: Plot of data from Table 1
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Sensor Output Overflow Removal

The jump in the sensor data around 100° input angle will cause 
difficulties in the next processing steps. It is removed by adding 
360° to all values after the jump into negative direction. Also, 
the mean value of the data should be within ±180° to avoid other 
issues in later processing. This is achieved by the following lines: 

%% pre-processing
% check if rising/falling continuously with maximum one overflow
if any(diff(sensor_data_2) == 0)
    error('sensor data must be monotonously increasing or decreasing')
elseif sum(diff(sensor_data_2) < 0 ) <= 1
    % rising angle data with zero or one overflows, overflow will be corrected
    sensor_data_2 = sensor_data_2(:) + 360*cumsum([false; diff(sensor_data_2(:)) 
< 0 ]);
elseif sum(diff(sensor_data_2) > 0 ) <= 1
    % falling angle data with zero or one overflows, overflow will be corrected
    sensor_data_2 = sensor_data_2(:) - 360*cumsum([false; diff(sensor_data_2(:)) 
> 0 ]);
else
    error('only one data overflow permitted')    
end

The direction of the input data may need to be inverted. This is 
detected and performed by the following lines: 

% invert angle direction, if needed
if all(diff(sensor_data_2) < 0 )
    disp('inverting angle direction...')
    sensor_data_2 = -sensor_data_2;
    raw_direction = -1;
elseif all(diff(sensor_data_2) > 0 )
    raw_direction = +1;
else
    error('nonmonotonic angle changes detected')
end

The mean value of the data should be within ±180° to avoid other 
issues in later processing. This is achieved by the following lines: 

% correctly wrap around sensor data 
rollovercorrection = round((mean(sensor_data_2) - 180)/360) * 360; 
sensor_data_2 = sensor_data_2 - rollovercorrection; 

The resulting values are shown in Table 2. 

Table 2: Encoder and output angles after removing overflow
Encoder 
Angle (°)

Output  
Angle (°)

Encoder 
Angle (°)

Output  
Angle (°)

0.00 –93.69 180.00 97.12

11.25 –81.39 191.25 111.45

22.50 –69.61 202.50 124.98

33.75 –58.01 213.75 137.46

45.00 –47.55 225.00 148.62

56.25 –37.00 236.25 158.82

67.50 –27.25 247.50 167.96

78.75 –17.31 258.75 176.48

90.00 –7.21 270.00 184.48

101.25 3.16 281.25 192.92

112.50 14.24 292.50 201.27

123.75 26.02 303.75 210.50

135.00 38.94 315.00 220.43

146.25 52.91 326.25 230.98

157.50 67.15 337.50 242.31

168.75 82.18 348.75 254.36
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Figure 12: Plot of data from Table 2
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Data Replication

Eventually, correction data based on the sensor angles from 0° to 
360° are needed. To avoid any edge effects, the sensor data will 
be replicated three times. This avoids edge effects in all cases 
by giving the possibility to always safely extract the values from 
sensor angle 360° to 720°. 

%extend sensor data
sensor_data_ext = [sensor_data_2(:); sensor_data_2(:)+360; ... 
    sensor_data_2(:)+720]; 

%extend input data
angle_input_ext = [angle_input(:); angle_input(:)+360; ...

    angle_input(:)+720]; 

Projection onto Sensor Data Grid

In the next step, the encoder angle inputs corresponding to 
sensor outputs between 360° and 720° are calculated (called 
“intermediategrid” in the code below). This is done with 
4096 steps, as a high resolution for this intermediate step benefits 
the final output quality. 

%% use spline to move the data from an ordered input grid 
% onto an ordered output grid: 
ordered_output_grid = 0:(360/4096):(360-360/4096);
intermediategrid = ordered_output_grid + 360;
projection = spline(sensor_data_ext, angle_input_ext, ...
    intermediategrid);

This step is graphically illustrated in Figure 13. 
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Figure 13: Finding the encoder angle (“projection”) as  
projection of a fixed-grid sensor angle (“intermediategrid”)

The difference between the angle encoder values and the sensor 
outputs is the correction curve and can be calculated by subtract-
ing the fixed-grid sensor angles from the calculated matching 
encoder angles. 

% calculate the required correction of the data: 
correction_curve = projection - intermediategrid; 
correction_curve = correction_curve(:);

The correction curve can be seen below in Figure 14. 
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Figure 14: Correction curve for our example
A brief check can be done to see that this curve is correct. In 
Table 1, it can be seen that for the sensor angle of 137.46°, the 
encoder angle is 213.75°. The correction curve of Figure 14 
shows that at a sensor angle of 137.5°, a correction of +76.29° 
needs to be applied. As 137.46 + 76.26 = 213.72° ≅ 213.75°, the 
correction curve calculated is applicable. 

At the next step, the correction curve needs to be stored in the 
AAS330x1. To explain how the sensor can apply correction, the 
concept of a piecewise linear correction will be explained first, 
then the AAS330x1 hardware capabilities, in order to determine 
the actual correction values.
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Linear Interpolation 
Concept

The correction curve can be approximated by a piecewise linear 
function. For this function, it is required to store support points as 
pairs of sensor coordinates and correction values. 

In Figure 8, these pairs would be [(y'0, c0,) … (y'n, cn)]. 

Between the support points, linear interpolation is performed. 

In angle sensor linearization applications, it is useful to use an 
equidistant grid of sensor angles. In this way, the sensor angle 
values [y'0 … y'n] do not need to be stored, and the implementa-
tion of the linear correction becomes easier. For example, it is 
possible to store 32 correction values, which will then be applied 
at sensor angles of 0°, 11.25°, 22.50°, etc. 

The points to be stored can be determined by different criteria. 
The simplest way to determine them is by choosing points on the 
correction curve at said sensor angles, which will be referred to as 
“on-curve” linear interpolation. However, the points can also be 
optimized for a least-squares error of the stored correction curve. 
This will be referred to as “least-squares” linear interpolation. 

Other optimization strategies are possible, but will not be 
described in this document. 

The difference between on-curve and least-squares correction 
parameters for the curve from this example is seen in Figure 15. 
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Figure 15: Comparison of ideal correction curve to  
linear interpolation with parameters determined by  

on-curve and least-squares method
The least-squares method reduces the amount of storage param-
eters needed by about 50% for the same maximum error and is 
less sensitive to single measurement outliers. Therefore, the least-
squares method will be used here to determine the linear interpo-
lation support points. 

Implementation

The correction curve needs to be approximated using a piecewise 
linear function. Because the support point should be chosen in a 
least-squares error fashion, the data before and after the support 
point also contributes in determining its final value. 

This creates a problem for the first and last point. The first sup-
port point at 0° only has a correction curve to the right side of 
the point, so that the data close to 360° would not be taken into 
account. To avoid this problem, the correction curve will be 
repeated three times, and a piecewise linear least-squares approx-
imation of that curve will be calculated. Then only the central 
part will be used to choose the parameters used. This concept is 
shown in Figure 16.  
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Figure 16: Correction curve replicated three times, 
least-squares fit, central points used

Fit Calculation

The code to replicate the correction curve and calculate the fit is 
given below: 

%% piecewise linear approximation of the correction curve
lin_sup_nodes = 32;

% repeat the correction table three times to avoid 
% corner effects on correction calculation. 
triple_correction_curve = repmat(correction_curve,3,1);
triple_correction_curve(end+1) = triple_correction_curve(1);

% do the same with the angle input 
triple_output_grid = 0:(360/4096):(3*360); 

% calculate support points
XI_lin_triple = linspace(0,3*360,lin_sup_nodes*3+1);
YI_lin_triple = lsq_lut_piecewise( triple_output_grid(:), ...
triple_correction_curve, XI_lin_triple );

% use only the central points to calculate the correction: 
YI_lin = YI_lin_triple(lin_sup_nodes+1 : 2*lin_sup_nodes+1);
XI_lin = linspace(0,360,lin_sup_nodes+1);

The lsq_lut_piecewise function is reprinted in Appendix A. 
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The list of correction parameters for 32-point linear interpolation 
is found below:

Table 3: Linear interpolation parameters
Angle (°) Amplitude (°)

0.00 97.95

11.25 98.34

22.50 98.04

33.75 96.95

45.00 94.96

56.25 92.67

67.50 90.31

78.75 87.46

90.00 84.57

101.25 81.91

112.50 79.57

123.75 77.64

135.00 76.34

146.25 76.17

157.50 77.11

168.75 79.59

180.00 83.70

191.25 87.86

202.50 91.68

213.75 93.85

225.00 95.02

236.25 95.43

247.50 94.88

258.75 94.16

270.00 93.38

281.25 92.46

292.50 91.96

303.75 91.77

315.00 92.69

326.25 93.61

337.50 95.48

348.75 96.77

360.00 97.95

Note that a correction parameter for 360° is also shown, even 
though it is identical to the one for 0°. This was done to correct 
angles between 348.75° and 360° in the MATLAB script. The 
AAS330x1, however does not store the 360° value separately and 
uses the 0° value instead. 

Figure 17 shows how the output error after linearization 
decreases as the number of linearization points increases. When 
32 linearization points are used, the angular error becomes very 
small, showing that the number implemented in the AAS330x1 is 
sufficient. 
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Figure 17: Remaining angle error after linearization 
with an increasing amount of linear support nodes for 

the example in this document
To understand how to determine the AAS330x1 programming 
parameters, the hardware capabilities of the AAS330x1 will be 
discussed first.
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AAS330x1 Linearization Features
The AAS330x1 stores the correction curve using 32-segment 
piecewise linear approximation. The correction values are applied 
at equidistant sensor angles of 0°, 11.25°, 22.50°, …, 348.75°. 
Between these points, linear interpolation between the two 
adjacent supporting points is applied. The sensor performs the 
linearization in 188 ns, which is much faster than most microcon-
troller implementations. 

Hardware Features

The AAS330x1 contains an offset stage, a linearization stage, and 
a rotational direction inverter. As seen in Figure 18, the offset 
adjustment can be performed before or after linearization. In this 
document, it will be assumed that “zal” (Zero After Lineariza-
tion) is set to ‘1’, which means that offset adjustment will be 
performed after linearization. 

“zal”=1        

CVH

ADC, angle 
measurement

180° rotation
(“rd”)

Angle hysteresis, 
output registers and pins

Angle averaging 
(“orate”)

Offset adjust 
(“zero_offset”)

Segmented 
linearization

(“eli”, “ls”, “LIN##”)

Offset adjust 
(“zero_offset”)

Rotation direction 
(“ro”)

Segmented 
linearization

(“eli”, “ls”, “LIN##”)

Rotation direction 
(“ro”)

Figure 18: Simplified AAS330x1 signal path  
with “zal” set to ‘1’

Rotation Direction

The rotation direction of the sensor can be inverted. If enabled, 
the angle value is inverted:

𝛼𝛼out =⎰
⎱
𝛼𝛼in

–𝛼𝛼in
  

"ro" = 0
"ro" = 1

    

Segmented Linearization

Segmented linearization is enabled by setting “eli” to ‘1’. If 
enabled, the values “LIN##” are subtracted from the sensor 
output at an angle of (## / 32) × 360°. For example, the value for 
“LIN10” is applied at (10 / 32) × 360° = 112.5°. Values between 
these angles are linearly interpolated between the adjacent sup-
port points. For example, the correction value at 115° will be 
determined based on the values of “LIN10” and “LIN11”. 

The LIN fields are 12-bit signed values and written in 2’s 
complement. The resolution depends on the bit “ls” and is 22.5° 
/ 2048 LSB for “ls” = ’0’ and 45° / 2048 LSB for “ls” = ’1’. 
Because they are subtracted from the angle, negative values in the 
LIN fields increase the angle output of the sensor. This is detailed 
in the following table:

Table 4: Recorded encoder and output angles for sensor_data
LIN## 

register value Meaning (degrees) Resulting Angle 
Change (degrees)

hex dec "ls"=0 "ls"=1 "ls"=0 "ls"=1
0x800 –2048 –22.50 –45.00 22.50 45.00

0x801 –2047 –22.49 –44.98 22.49 44.98

0x802 –2046 –22.48 –44.96 22.48 44.96

… … … … … …

0xFFE –2 –0.02 –0.04 0.02 0.04

0xFFF –1 –0.01 –0.02 0.01 0.02

0x000 0 0.00 0.00 0.00 0.00

0x001 1 0.01 0.02 –0.01 –0.02

0x002 2 0.02 0.04 –0.02 –0.04

… … … … … …

0x7FD 2045 22.47 44.93 –22.47 –44.93

0x7FE 2046 22.48 44.96 –22.48 –44.96

0x7FF 2047 22.49 44.98 –22.49 –44.98

For example, if the value for LIN00 is set to 0xD0F, this repre-
sents a decimal value of 3343 – 212 = –753. If “ls” is set to ‘0’, 
this equals an angle value of 22.5° / 2048 LSB × ( 753 LSB) = 
–8.27°. This value will be subtracted from the measured angle, so 
for an input of 0°, the linearization block will output 0° – (–8.27°) 
= +8.27°. 
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Offset Adjustment

The offset adjustment stage of the sensor aligns the zero values 
of the sensor to that of the external encoder. It is controlled by 
the EEPROM field “zero_offset”, which allows writing a 12-bit 
value. This unsigned value represents an angle between 0° and 
(4095 / 4096) × 360°, which is subtracted from the original angle 
value. 

𝛼𝛼out = 𝛼𝛼in −"zero_offset" ×
1

4096
× 360° 

180° Rotation

In a final processing step, the sensor output can be rotated by 
180°: 

𝛼𝛼out =⎰
⎱

𝛼𝛼in

𝛼𝛼in + 180°
  

"rd" = 0
"rd" = 1

    

This function can be performed equally well by the offset stage, 
so that the die rotation function in this document will not be used. 
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Parameter Calculation
Knowing how the sensor works, the correction curve described 
in Table 3 can now be represented in terms of sensor parameters. 
This is done by first using the information on rotation direc-
tion and offset determined from the data. Then the linearization 
parameter scale can be selected, and the full linearization value 
table can be determined.  

%% calculate AAS330x1 parameters
 
% "zal": zero-after-linearization is always zero 
    disp(['*** AAS330x1 "zal" parameter in EEPROM should be set to 1']);
 
% "eli": enable linearization is always one
    disp(['*** AAS330x1 "eli" parameter in EEPROM should be set to 1']);
 
% "ro": Die rotation should be enabled if direction of sensor angles was 
decreasing. 
    if (raw_direction == -1)
        sensor_EEPROM_val_ro = 1;
    else
        sensor_EEPROM_val_ro = 0;
    end
    disp(['*** AAS330x1 "ro" parameter in EEPROM should be set to ' 
num2str(sensor_EEPROM_val_ro)]);
 
% "zero_offset": Offset should set as average of min and max offset. 
% This will make best use of the range of +/-45 degrees that the 
linearization parameters have.  
    zero_offset = mean([min(YI_lin) max(YI_lin)]); 
    % sensor offset is subtracted from angle data. If sensor direction is 
inverted, this takes place before angle inversion, 
    % so that the sensor offset sign must be inverted in that case 
    sensor_EEPROM_val_zero_offset = uint16(mod(round(-zero_
offset/360*4096),4096));
    disp(['*** AAS330x1 "zero_offset" parameter in EEPROM should be set to ' 
num2str(sensor_EEPROM_val_zero_offset)]);
 
% "ls": Linearization scale must be set depending on the maximum parameter 
values. 
    linearization_range_small = 22.5 * (2047/2048);
    linearization_range_large = 45.0 * (2047/2048);
    if round(max(abs(YI_lin - zero_offset))) < linearization_range_small
        sensor_EEPROM_val_ls = uint16(0);
    elseif round(max(abs(YI_lin - zero_offset))) < linearization_range_large
        sensor_EEPROM_val_ls = uint16(1);
    else
        error('Linearization parameters outside of +/-45° range; 
linearization not possible')
    end
    disp(['*** AAS330x1 "ls" parameter in EEPROM should be set to ' 
num2str(sensor_EEPROM_val_ls)]);
 
% "LIN_##" parameters 
    if (sensor_EEPROM_val_ls == 0) % small range of +/- 22.5°
        sensor_EEPROM_val_LIN = int16(round((zero_offset-YI_lin(1:lin_sup_
nodes))/22.5*2048));
    else % larger range of +/- 45.0°
        sensor_EEPROM_val_LIN = int16(round((zero_offset-YI_lin(1:lin_sup_
nodes))/45.0*2048));        
    end
    disp(['*** AAS330x1 "LIN_##" parameters in EEPROM should be set to the 
following values:']);
    disp(num2str(sensor_EEPROM_val_LIN));
 
%% write csv table for Allegro AAS330x1 Samples Programmer
EEPtable = cell(38,2);
EEPtable(1,1:2) = {'EEPROM',''};
EEPtable(2,1:2) = {'zal',1};
EEPtable(3,1:2) = {'eli',1};
EEPtable(4,1:2) = {'ro',sensor_EEPROM_val_ro};
EEPtable(5,1:2) = {'zero_offset',sensor_EEPROM_val_zero_offset};
EEPtable(6,1:2) = {'ls',sensor_EEPROM_val_ls};
for i = 1:32
    EEPtable{6+i,1} = num2str(['Linearization Error Segment ' num2str(i-
1,'%02d')]);
    EEPtable{6+i,2} = num2str(sensor_EEPROM_val_LIN(i));
end
cell2csv('EEP_table.csv',EEPtable);

At the end of this code, the function cell2csv is used to write 
a CSV table that can be imported by the Allegro AAS33001 
/ AAS33051 Samples Programmer. The function cell2csv is 
reprinted in Appendix B. Many similar functions are in circula-
tion, but the one provided should suffice. The resulting table for 
our example is the following:
EEPROM,
zal,1
eli,1
ro,0
zero_offset,3103
ls,0
Linearization Error Segment 00,-973
Linearization Error Segment 01,-1009
Linearization Error Segment 02,-981
Linearization Error Segment 03,-881
Linearization Error Segment 04,-701
Linearization Error Segment 05,-492
Linearization Error Segment 06,-278
Linearization Error Segment 07,-18
Linearization Error Segment 08,245
Linearization Error Segment 09,487
Linearization Error Segment 10,701
Linearization Error Segment 11,875
Linearization Error Segment 12,994
Linearization Error Segment 13,1009
Linearization Error Segment 14,924
Linearization Error Segment 15,699
Linearization Error Segment 16,323
Linearization Error Segment 17,-54
Linearization Error Segment 18,-402
Linearization Error Segment 19,-600
Linearization Error Segment 20,-707
Linearization Error Segment 21,-744
Linearization Error Segment 22,-694
Linearization Error Segment 23,-627
Linearization Error Segment 24,-558
Linearization Error Segment 25,-474
Linearization Error Segment 26,-428
Linearization Error Segment 27,-411
Linearization Error Segment 28,-494
Linearization Error Segment 29,-578
Linearization Error Segment 30,-748
Linearization Error Segment 31,-865
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Performance Estimation
The accuracy after linearization with the parameters used can be 
estimated in simulation. For that, the linearization parameters that 
were determined need to be applied in simulation, together with 
the optional direction inversion: 

%% perform linearization in MATLAB
restored_linear_signal = mod(raw_direction*sensor_data(:) + ...
  interp1(XI_lin,YI_lin,mod(raw_direction*sensor_data(:),360),'linear'),360);
 
%% plot the remaining error after linearization in MATLAB
figure;
plot(angle_input(:),mod(180+restored_linear_signal(:)-angle_input(:),360)-
180,'.-');
grid on;legend('Linear interpolation (32 segments)');
xlim([0 360]); ylim([-1 1]);
xlabel('Measured angle [deg]'); 
ylabel('Expected error after linearization [deg]');

Figure 19 shows the expected angle error after linearization in the 
AAS330x1: 
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Figure 19: Remaining angle error after linearization 
with AAS330x1 as described in this document,  

for the example from this document
Conclusion
This document explains the theory behind linearization in general 
and describes how linear approximation of the correction can be 
done. 

The AAS33001 and AAS33051 allow for segmented lineariza-
tion. This linearization method is performed in under 0.2 µs by 
the sensors, and achieves very good accuracy with 32 segments. 

Using this document, any user should be able to determine the 
best linearization parameters for the AAS33001 and AAS33051. 

Contact an Allegro representative for any remaining questions or 
support.
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APPENDIX A: FUNCTION LSQ_LUT_PIECEWISE
From https://uk.mathworks.com/matlabcentral/fileexchange/40913-piecewise-linear-least-square-fit.

Copyright (c) 2013, Guido Albertin 

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation 
and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED 
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGE.
function [ YI ] = lsq_lut_piecewise( x, y, XI )
% LSQ_LUT_PIECEWISE Piecewise linear interpolation for 1-D interpolation (table lookup)
%   YI = lsq_lut_piecewise( x, y, XI ) obtain optimal (least-square sense)
%   vector to be used with linear interpolation routine.
%   The target is finding Y given X the minimization of function 
%           f = |y-interp1(XI,YI,x)|^2
%   
%   INPUT
%       x measured data vector
%       y measured data vector
%       XI break points of 1-D table
%
%   OUTPUT
%       YI interpolation points of 1-D table
%           y = interp1(XI,YI,x)
%
if size(x,2) ~= 1
    error('Vector x must have dimension n x 1.');   
elseif size(y,2) ~= 1
    error('Vector y must have dimension n x 1.');    
elseif size(x,1) ~= size(x,1)
    error('Vector x and y must have dimension n x 1.'); 
end
 
% matrix defined by x measurements
A = sparse([]); 
 
% vector for y measurements
Y = []; 
 
for j=2:length(XI)
    
    % get index of points in bin [XI(j-1) XI(j)]
    ix = x>=XI(j-1) & x<XI(j);
    
    % check if we have data points in bin
    if ~any(ix)
        warning(sprintf('Bin [%f %f] has no data points, check estimation. Please re-define X vector accordingly.',XI(j-1),XI(j)));
    end
    
    % get x and y data subset
    x_ = x(ix);
    y_ = y(ix);
   
    % create temporary matrix to be added to A
    tmp = [(( -x_+XI(j-1) ) / ( XI(j)-XI(j-1) ) + 1) (( x_-XI(j-1) ) / ( XI(j)-XI(j-1) ))];
    
    % build matrix of measurement with constraints
    [m1,n1]=size(A);
    [m2,n2]=size(tmp);
    A = [[A zeros(m1,n2-1)];[zeros(m2,n1-1) tmp]];
    
    % concatenate y measurements of bin
    Y = [Y; y_];
end

% obtain least-squares Y estimation
YI=A\Y;

https://uk.mathworks.com/matlabcentral/fileexchange/40913-piecewise-linear-least-square-fit%0D
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APPENDIX B: FUNCTION CELL2CSV
Based on https://uk.mathworks.com/matlabcentral/fileexchange/7601-cell2csv.

function cell2csv(filename,cellArray,delimiter)
% Writes cell array content into a *.csv file.
% 
% CELL2CSV(filename,cellArray,delimiter)
%
% filename  = Name of the file to save. [ i.e. 'text.csv' ]
% cellarray = Name of the Cell Array where the data is in
% delimiter = Seperating sign, normally:',' (it's default)
%
% by Sylvain Fiedler, KA, 2004
% modified by Rob Kohr, Rutgers, 2005 - changed to english and fixed delimiter
% modified by Dominik Geisler, Allegro MicroSystems, 2018 - removed 'eval' function
if nargin<3
    delimiter = ',';
end
 
file = fopen(filename,'w');
for z=1:size(cellArray,1)
    for s=1:size(cellArray,2)
        
        var = cellArray{z,s};
        
        if size(var,1) == 0
            var = '';
        end
        
        if isnumeric(var) == 1
            var = num2str(var);
        end
        
        fprintf(file,var);
        
        if s ~= size(cellArray,2)
            fprintf(file,[delimiter]);
        end
    end
    fprintf(file,'\n');
end
fclose(file);

https://uk.mathworks.com/matlabcentral/fileexchange/7601-cell2csv
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APPENDIX C: FUNCTION ENTIRE SCRIPT USED IN THIS APPLICATION NOTE
Copyright (c) 2018, Dominik Geisler, Allegro MicroSystems Germany GmbH

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation 
and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED 
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGE.

%% sensor data definition
angle_input = [0:11.25:348.75];
sensor_data = [266.31 278.61 290.39 301.99 312.45 323.00 332.75 342.69 352.79 3.16 14.24 26.02 38.94 52.91 67.15 82.18 97.12 111.45 124.98 137.46 148.62 158.82 
167.96 176.48 184.48 192.92 201.27 210.50 220.43 230.98 242.31 254.36];
 
%% Check rising reference angle
if any(angle_input<0) || any(angle_input>360) || any(diff(angle_input)<=0)
    error('reference angle must be monotonuously rising between 0 and 360');
end
 
%% Check correct sensor angle range
if any(sensor_data<0) || any(sensor_data>360) 
    error('sensor angle must be between 0 and 360');
end
 
%% pre-processing
sensor_data_2 = sensor_data(:);
 
% check if rising/falling continuously with maximum one overflow
if any(diff(sensor_data_2) == 0)
    error('sensor data must be monotonously increasing or decreasing')
elseif sum(diff(sensor_data_2) < 0 ) <= 1
    % rising angle data with zero or one overflows, overflow will be corrected
    sensor_data_2 = sensor_data_2(:) + 360*cumsum([false; diff(sensor_data_2(:)) < 0 ]);
elseif sum(diff(sensor_data_2) > 0 ) <= 1
    % falling angle data with zero or one overflows, overflow will be corrected
    sensor_data_2 = sensor_data_2(:) - 360*cumsum([false; diff(sensor_data_2(:)) > 0 ]);
else
    error('only one data overflow permitted')    
end
 
% invert angle direction, if needed
if all(diff(sensor_data_2) < 0 )
    disp('inverting angle direction...')
    sensor_data_2 = -sensor_data_2;
    raw_direction = -1;
elseif all(diff(sensor_data_2) > 0 )
    raw_direction = +1;
else
    error('nonmonotonic angle changes detected')
end
 
% correctly wrap around sensor data 
rollovercorrection = round((mean(sensor_data_2) - 180)/360) * 360; 
sensor_data_2 = sensor_data_2 - rollovercorrection; 
 
%extend sensor data
sensor_data_ext = [sensor_data_2(:); sensor_data_2(:)+360; ... 
    sensor_data_2(:)+720]; 
%extend input data
angle_input_ext = [angle_input(:); angle_input(:)+360; ...
    angle_input(:)+720]; 
 
%% plot magnet measurements after preprocessing finished
figure;plot([angle_input(:)],[sensor_data_2(:)],'o-');
xlabel('Encoder angle [deg]');
ylabel('Output angle [deg]');
grid on;
xlim([0 360]);
if (raw_direction == +1)
    title('Output field direction over encoder direction');
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else
    title('Output field direction over encoder direction after direction inversion');
end
 
%% use spline to move the data from an ordered input grid 
% onto an ordered output grid: 
ordered_output_grid = 0:(360/4096):(360-360/4096);
intermediategrid = ordered_output_grid + 360;
projection = spline(sensor_data_ext, angle_input_ext, ...
    intermediategrid);
 
% calculate the required correction of the data: 
correction_curve = projection - intermediategrid; 
correction_curve = correction_curve(:);
 
%% piecewise linear approximation of the correction curve
lin_sup_nodes = 32;
 
% repeat the correction table three times to avoid 
% corner effects on correction calculation. 
triple_correction_curve = repmat(correction_curve,3,1);
triple_correction_curve(end+1) = triple_correction_curve(1);
 
% do the same with the angle input 
triple_output_grid = 0:(360/4096):(3*360); 
 
% calculate support points
XI_lin_triple = linspace(0,3*360,lin_sup_nodes*3+1);
YI_lin_triple = lsq_lut_piecewise( triple_output_grid(:), ...
triple_correction_curve, XI_lin_triple );
 
% use only the central points to calculate the correction: 
YI_lin = YI_lin_triple(lin_sup_nodes+1 : 2*lin_sup_nodes+1);
XI_lin = linspace(0,360,lin_sup_nodes+1);
 
%% calculate AAS330x1 parameters
 
% "zal": zero-after-linearization is always zero 
    disp(['*** AAS330x1 "zal" parameter in EEPROM should be set to 1']);
 
% "eli": enable linearization is always one
    disp(['*** AAS330x1 "eli" parameter in EEPROM should be set to 1']);
 
% "ro": Die rotation should be enabled if direction of sensor angles was decreasing. 
    if (raw_direction == -1)
        sensor_EEPROM_val_ro = 1;
    else
        sensor_EEPROM_val_ro = 0;
    end
    disp(['*** AAS330x1 "ro" parameter in EEPROM should be set to ' num2str(sensor_EEPROM_val_ro)]);
 
% "zero_offset": Offset should set as average of min and max offset. 
% This will make best use of the range of +/-45 degrees that the linearization parameters have.  
    zero_offset = mean([min(YI_lin) max(YI_lin)]); 
    % sensor offset is subtracted from angle data. If sensor direction is inverted, this takes place before angle inversion, 
    % so that the sensor offset sign must be inverted in that case 
    sensor_EEPROM_val_zero_offset = uint16(mod(round(-zero_offset/360*4096),4096));
    disp(['*** AAS330x1 "zero_offset" parameter in EEPROM should be set to ' num2str(sensor_EEPROM_val_zero_offset)]);
 
% "ls": Linearization scale must be set depending on the maximum parameter values. 
    linearization_range_small = 22.5 * (2047/2048);
    linearization_range_large = 45.0 * (2047/2048);
    if round(max(abs(YI_lin - zero_offset))) < linearization_range_small
        sensor_EEPROM_val_ls = uint16(0);
    elseif round(max(abs(YI_lin - zero_offset))) < linearization_range_large
        sensor_EEPROM_val_ls = uint16(1);
    else
        error('Linearization parameters outside of +/-45° range; linearization not possible')
    end
    disp(['*** AAS330x1 "ls" parameter in EEPROM should be set to ' num2str(sensor_EEPROM_val_ls)]);
 
% "LIN_##" parameters 
    if (sensor_EEPROM_val_ls == 0) % small range of +/- 22.5°
        sensor_EEPROM_val_LIN = int16(round((zero_offset-YI_lin(1:lin_sup_nodes))/22.5*2048));
    else % larger range of +/- 45.0°
        sensor_EEPROM_val_LIN = int16(round((zero_offset-YI_lin(1:lin_sup_nodes))/45.0*2048));        
    end
    disp(['*** AAS330x1 "LIN_##" parameters in EEPROM should be set to the following values:']);
    disp(num2str(sensor_EEPROM_val_LIN));
 
%% write csv table for Allegro AAS330x1 Samples Programmer
EEPtable = cell(38,2);
EEPtable(1,1:2) = {'EEPROM',''};
EEPtable(2,1:2) = {'zal',1};
EEPtable(3,1:2) = {'eli',1};
EEPtable(4,1:2) = {'ro',sensor_EEPROM_val_ro};
EEPtable(5,1:2) = {'zero_offset',sensor_EEPROM_val_zero_offset};
EEPtable(6,1:2) = {'ls',sensor_EEPROM_val_ls};
for i = 1:32
    EEPtable{6+i,1} = num2str(['Linearization Error Segment ' num2str(i-1,'%02d')]);
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    EEPtable{6+i,2} = num2str(sensor_EEPROM_val_LIN(i));
end
cell2csv('EEP_table.csv',EEPtable);
 
%% perform linearization in Matlab
restored_linear_signal = mod(raw_direction*sensor_data(:) + ...
  interp1(XI_lin,YI_lin,mod(raw_direction*sensor_data(:),360),'linear'),360);
 
%% plot the remaining error after linearization in Matlab
figure;
plot(angle_input(:),mod(180+restored_linear_signal(:)-angle_input(:),360)-180,'.-');
grid on;legend('Linear interpolation (32 segments)');
xlim([0 360]); ylim([-1 1]);xlabel('Measured angle [deg]'); 
ylabel('Expected error after linearization [deg]');
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