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MODELING FALSE ALARM RATE AND RELATED 
CHARACTERISTICS OF LIDAR AVALANCHE PHOTODIODE 
PHOTORECEIVERS

ABSTRACT

An analysis is presented of the error introduced into esti-
mates of avalanche photodiode (APD) lidar performance by 
assuming Gaussian distribution of the APD multiplication 
gain. The amplitude of current pulses emitted by an APD 
obeys the McIntyre distribution, the tails of which diverge 
from the Gaussian distribution having the same mean and 
variance. Because extinction of false alarms requires setting 
a discrimination threshold far into the tail of the output 
distribution of an analog photoreceiver, the threshold level 
required to achieve a specified false-alarm rate (FAR) using 
an APD-based photoreceiver is often not accurately pre-
dicted by the standard FAR model of Rice. [1] Characteristics 
of APD-based photoreceivers are calculated using the 
McIntyre distribution and are compared with characteristics 
calculated using the Gaussian approximation.

INTRODUCTION

Many lidar photoreceivers designed for the eye-safe spectral 
region near 1550 nm are assembled from InGaAs avalanche 
photodiodes (APDs) and resistive-feedback transimpedance 
amplifiers (RTIAs), followed by threshold pulse-detection 
and time-stamping circuits. This general photoreceiver 
configuration—whether deployed as a single-element sen-
sor or as multiple parallel channels in a large-format sensor 
array—is applicable to lidar applications, such as automated 
vehicle navigation and hazard avoidance. InGaAs APDs are 
attractive for these applications because they are sensitive 
beyond a wavelength of 1.4 μm, where higher laser pulse 
energies can be used without creating an ocular hazard, 

and because the APD avalanche gain makes better use of 
weaker optical signals. Together, these qualities enable 
faster collection of three-dimensional scene data from lon-
ger range or using smaller-aperture optics. However, accu-
rate modeling of electro-optic systems based on InGaAs 
APD photoreceivers requires an accurate model of the FAR 
of the APD photoreceiver, and the standard FAR model by 
Rice [1]—which is widely applied to photodiode-based pho-
toreceivers—requires modification to accurately model false 
alarms from APD photoreceivers.

A simplified block diagram of the signal chain of a lidar APD 
photoreceiver is shown in Figure 1. 
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Figure 1: Block diagram of an APD-based lidar photoreceiver.

The APD converts incident optical power (watts) to an 
output photocurrent (amps); the transimpedance ampli-
fier (TIA)—characterized by a conversion gain in ohms if its 
feedback is primarily resistive—then converts the photocur-
rent to a potential (volts). It is often convenient to work in 
units of quanta per signal pulse, such as photons for the opti-
cal signal and electrons for the output of the APD, in which 
case a conversion gain in units of reciprocal capacitance 
(e.g., V ∕ e−) can also be defined, based on the peak deflec-

By Andrew S. Huntington, George M. Williams Jr., and Adam O. Lee
Allegro MicroSystems

[1] S. O. Rice, “Mathematical analysis of random noise,” Bell Syst. Tech. J. 24(1), 46–156 (1945).
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tion of the output voltage of the TIA in response to a current 
pulse containing a given electron count. In general, though, 
whether the conversion gain of the TIA is expressed in ohms 
or volts per electron, it is a function of photocurrent signal 
pulse shape because TIA bandwidth is finite and TIA gain 
spectra are not necessarily white. In the following discussion, 
a fixed photocurrent signal pulse shape that results in a fixed 
conversion gain is assumed.

The receiver diagrammed in Figure 1 is a leading-edge 
detector—one of the most common methods of time-of-flight 
lidar. The potential at the TIA output (Vout; see Figure 1) is fed 
into a threshold comparator that discriminates signal pulses 
from noise based on amplitude. When Vout passes through 
the detection threshold (Vth) with positive slope, a digital 
pulse is generated that is time-stamped by a time-to-digital 
converter.

If the comparator transitions upon reception of an optical 
signal, that event is a true positive; if the comparator transi-
tions in the absence of a signal, that event is a false alarm. 
The pulse detection efficiency (Pd) of the photoreceiver is 
the ratio of true positives to transmitted pulses. Its FAR is the 
probability that, in the absence of a signal return, within an 
infinitesimal time interval (t, t + dt), the potential at the TIA 
output transitions through the detection threshold with posi-
tive slope.

A receiver operating characteristic (ROC) is a plot of the true-
positive rate (TPR) compared with the false-positive rate (FPR) 
of a photoreceiver. If a lidar photoreceiver is operated using 
a range gate (tgate) during which reception of a single pulse 
return is possible, then:

Equation 1: 

TPR =  Pd / tgate (Hz).

Poisson statistics are used to calculate the FPR from the FAR, 
applying the definition that one or more false alarms dur-
ing tgate constitute a false positive. The probability of false 
positive (PFP) is unity minus the probability of zero false alarms 
occurring during the range gate. The FPR is:

Equation 2: 

FPR =
PFP

tgate

=
tgate

1 – exp(–FAR × tgate) (Hz).

Due to the term exp(–FAR × tgate) in Equation 2, the ROC for a 
lidar photoreceiver depends on the range gate to which the 

probability of false positives applies. This prevents prepara-
tion of a general ROC for a lidar photoreceiver. However, a 
general plot of Pd against FAR can be computed that charac-
terizes a receiver, which may informally be termed an ROC, 
as it permits easy computation of an ROC once the range 
gate has been specified. This latter type of ROC is analyzed 
in this paper.

The statistics of true positives and false alarms, which deter-
mine the ROC of a photoreceiver, depends on the pulse-
height distributions of Vout when a signal is present (true posi-
tives) and when a signal is not present (false alarms). These 
distributions are illustrated graphically in Figure 2, where the 
solid curve is the distribution of Vout in the absence of a signal 
return, and the dashed curve is the distribution of Vout in the 
presence of a signal return. When a signal is received, the 
noise sources that cause Vout to vary under dark conditions—
such as the amplifier circuit noise and the shot noise on dark 
current—are also present, such that the distribution of Vout 
when a signal is present is the convolution of its distribution 
under dark conditions with a separate distribution that char-
acterizes the signal shot noise.
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Figure 2: Statistical distributions of Vout for conditions with (dashed curves) 
and without (solid curves) the presence of an optical signal return.

The Pd is the fraction of an ensemble of identically prepared 
signal pulses that will result in Vout ≥ Vth. Assuming that 
the photoreceiver is in an armed state where it is capable 
of responding to the reception of a signal pulse, Pd is the 
complementary cumulative distribution function (CCDF) 
of Vout, evaluated at Vth, in the presence of a signal return; 
graphically, the CCDF is the shaded area under the dashed 
curve in Figure 2.

Only part of the information required to compute the FAR is 
contained in Figure 2—the probability that, in the absence 
of signal, Vout passes through Vth. It is also necessary to 
determine the joint probability that Vout has positive slope 
as it passes through Vth. Rice [1] published equations for 
FAR based on the assumption that both Vout and its first 
time derivative are Gaussian distributed, using the bivariate 
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normal distribution in his foundational 1944/1945 paper 
“Mathematical analysis of random noise.” To obtain accurate 
results for APD-based photoreceivers, Rice’s equation must 
be modified to account for the amplitude distribution of the 
APD output, published by McIntyre [2] in 1972:

Equation 3:

EQ-TARGET;temp:intralink-;e003;326;554PMcIntyre (n) =
pΓ n

1−k +1

n(n − p )! × Γ nk
1−k + 1 + p

×
1 + k(M − 1)

M
p + nk

1−k

×
(1 − k)+(M −1)

M
n−p

,

where p is the count of primary electrons injected into the 
APD multiplier, n is the count of output electrons resulting 
from p, k is the ionization rate ratio of the slower-ionizing 
carrier type to the faster-ionizing type (typically between 
0.2 and 0.4 for InGaAs APDs), Γ is the Euler gamma func-
tion, and M is the mean avalanche gain at which the APD is 
operating.

The deviation of the McIntyre distribution from Gaussian—
and its positive skew in particular—is more pronounced 
when a small number of primary electrons is multiplied (small 
p), when the mean avalanche gain is large (large M), and 
when the ionization rate ratio is closer to unity (k → 1). This 
can be observed in the McIntyre distributions in Figure 3, 
which compares different values of p, M, and k with the 
same average output of ⟨n⟩ = 600 e−. It is more important 
to use the McIntyre distribution to calculate FAR than Pd 
because the number of primary electrons in the zero-signal 
condition is much smaller than during signal reception and 
because the detection threshold of the photoreceiver must 
be set many standard deviations into the tail of the noise 
distribution to achieve technologically useful FAR, whereas 
differences in Pd smaller than a few percent are usually con-
sidered negligible. If the signal level is beyond the photon-
counting regime (tens of photons or stronger), the Gaussian 
approximation is sufficiently accurate to calculate Pd.

Output (e-)

10-6

10-5

10-4

10-3

10-2

10-1

10 1,000

Pr
ob

ab
ili

ty

100 10,000

p=1; M=600

p=10; M=60

p=100; M=6

k=0

k=
0

k=0.2k=0.4

k=
0.

4

k=
0

k=
0.

2

k=
0.

4
k=

0.
2

Figure 3: McIntyre distributions for different input electron counts (p), aver-
age gains (M ), and ionization rate ratios (k ) all resulting in an average 
output of 600 e−.

 AVALANCHE PHOTODIODE PHOTO-
RECEIVER OUTPUT STATISTICS

The output of an analog APD photoreceiver is the superposi-
tion of the output-voltage noise of the TIA with the voltage 
response of the TIA to the charge or current from the APD. 
The output of the APD is statistically independent from the 
noise of the TIA, so the random variable representing the 
output of the photoreceiver is the sum of two independent 
random variables, and its distribution is the convolution of 
their individual distributions.

The McIntyre distribution is a discrete electron-count distri-
bution, so it is convenient to refer all quantities to the node 
between APD output and TIA input, and to work in units of 
electrons. Assuming a TIA conversion gain (G), then Vout and 
Vth are represented by equivalent charges at the TIA input 
(nout = Vout/G and nth = Vth/G, respectively). Moreover, 
although Vout is a continuous variable that can take on any 
value as a result of circuit noise, the fluctuations of Vout due 
to the circuit noise of the TIA can be discretized and referred 
to the TIA input in units of charge. Writing the discrete prob-
ability distributions of the TIA input-referred noise and the 
APD output symbolically as PTIA and PAPD, the probability 
that the output of the APD and the input-referred noise of 
the TIA will sum to a particular quantity of charge, nout, is 
given by the discrete convolution:

Equation 4:

 

EQ-TARGET;temp:intralink-;e004;63;355

PRX(nout ) = (PTIA  PAPD)(nout)

≡ ∑
i

PTIA(i) PAPD(nout − i).

[2] R. J. McIntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes: theory,” IEEE Trans. Electron Devices 19(6), 703–713 (1972)
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This model presents some difficulties of interpretation 
because the noise of the TIA is an analog value characterized 
by the continuous Gaussian distribution of its output volt-
age, whereas the charge output of the APD is quantized and 
obeys the discrete McIntyre distribution. Furthermore, the 
McIntyre distribution does not address temporal statistics—it 
gives the probability that a certain number of electrons will 
eventually be output by an APD, yet it does not determine if 
all those output electrons will simultaneously contribute to 
the instantaneous current. Although the number of photons 
that arrive in a laser pulse and the number of photoelectrons 
generated by reception of that laser pulse are both discrete 
quantities, whether all of them contribute to nout depends 
on the laser pulse shape and the frequency response of the 
TIA. A related issue is that, to apply the McIntyre distribu-
tion to FAR calculations, charge-integration times must be 
defined so that discrete electron counts can be computed 
from dark current and background photocurrent.

In practice, the lack of rigor inherent in using the Gaussian 
distribution as though it were a discrete distribution is not 
a serious difficulty for the noise levels and conversion gains 
that are characteristic of the TIAs used in lidar. As long as 
the voltage noise of the TIA is equivalent to hundreds of 
electrons or more at its input, little accuracy is lost if the 
random variable representing the input-referred noise of 
the TIA (nTIA, in units of electrons) is restricted to integer 
values so that the Gaussian distribution function PTIA(n) can 
be interpreted as the probability of the TIA noise taking on a 
value within a band of a unit width centered on nTIA. For the 
purpose of convolving PTIA(nTIA) with the output distribution 
of the APD:

Equation 5:

PTIA (nTIA) =
√2πvar(nTIA)

1 exp −
(nTIA − nTIA)2

2var(nTIA)
,

where nTIA is the mean output-voltage level of the TIA in the 
absence of a signal divided by G, and var(nTIA) is the square 
of the output noise referred to the TIA input in units of elec-
trons. It should be noted that although the TIA is character-
ized by a fixed output-voltage noise, the conversion gain 
depends on signal pulse shape, so the input-referred noise 
of the TIA depends on the pulse shape of the signal to which 
it is referenced.

Primary (unmultiplied) dark current and photocurrent are 
generated by Poisson processes, so the APD output distribu-
tion in the convolution of Equation 4 must account for the 
distribution of the primary electron count (p) in Equation 3. 
A Poisson-weighted sum of McIntyre distributions is used:

Equation 6:

PAPD (n) = 

exp (−⟨p⟩)

∑PPoisson (p) ×  PMcIntyre (n) 

= ∑ ⟨p⟩p

p!  ×  PMcIntyre (n). 

p  

p  

In the dark condition, the primary direct-current (DC) dark 
current and background photocurrent integrate to an aver-
age electron count ⟨pDC⟩. Reception of an optical pulse 
generates psignal primary carriers and, because the DC 
current is also present, the average primary electron count in 
the illuminated condition is:

Equation 7:

⟨p⟩ = ⟨pDC⟩ + ⟨psignal⟩.

In Figure 2, assuming the TIA contributes no offset, the 
mean voltage when no signal is present (Vdark) is expressed 
as:

Equation 8:

Vdark = G × M × ⟨pDC⟩ (V),

and the mean output voltage when a signal is present 
(Vsignal) is expressed as:

Equation 9:

Vsignal = G × M × (⟨pDC⟩ + ⟨psignal⟩) (V).

To clarify the effective integration times that relate APD cur-
rents to the primary electron counts pDC and psignal—as well 
as to the multiplied output electron count in Equation 3—it 
is helpful to consider two limiting amplifier cases: 1) an ideal 
RTIA that generates an instantaneous output voltage propor-
tional to the instantaneous output current of the APD; and 
2) a switched capacitive-feedback transimpedance amplifier 
(CTIA), similar to those used in many imaging readout inte-
grated circuits, where an output voltage is generated that is 
proportional to the total charge delivered by the APD during 
some fixed exposure time. 

In the case of an ideal RTIA, the response of the photore-
ceiver is not determined by the total number of electrons 
generated from the photons received in a signal pulse, but 
rather by the maximum photocurrent that flows as a result. 
The Shockley–Ramo theorem allows the instantaneous cur- 
rent at the terminals of an APD, i(t), to be calculated from the 
instantaneous count of electrons and holes within its junc-
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tion, ne(t) and nh(t), and their respective saturation velocities 
in units of cm/s, vse and vsh, as [3],[4],[5]:

Equation 10:

i(t) ≈
q
w  [vsene(t) + vshnh(t)] (A),

where q is the elementary charge in Coulombs, and w is the 
junction width in cm.

Equation 10 can be recast in terms of junction transit times 
for electrons (te = w∕Vse) and holes (th = w∕Vsh) as:

Equation 11:

i(t) ≈ q
ne(t)

te
+

nh(t)
th

  (A).

If the laser pulse is much shorter than both junction transit 
times, then all of the carriers generated from the pulse will 
be present inside the junction simultaneously, and the APD 
output pulse-height distribution can be calculated using the 
average photon number of the laser pulse (Nsignal) and the 
primary quantum efficiency (QE) of the APD to find the mean 
primary photoelectron count:

Equation 12:

⟨psignal⟩ = QE × Nsignal,

and the mean multiplied signal electron count:

Equation 13:

⟨Nsignal⟩ = ⟨psignal⟩ × M.

If, however, the laser pulse duration (tpulse) is longer than the 
junction transit time, only a portion of the pulse energy will 
contribute to the response of the ideal RTIA photoreceiver. 
For a rectangular pulse of duration tpulse in seconds, the aver-
age primary electron count resulting from a signal pulse is 
approximately:

Equation 14:

⟨psignal⟩ ≈ QE × Nsignal [te / tpulse].

A calculation similar to Equation 14 applies to the com-

bined dark current (Idark) and background photocurrent 
(Ibackground), regardless of whether the signal pulse is longer 
or shorter than the junction transit time. Idark and Ibackground 
are both generated by Poisson processes and, for most 
SWIR APD designs, the majority of the dark current origi-
nates in the InGaAs light-absorption layer because, of the 
materials from which the device is fabricated, the InGaAs 
alloy has the narrowest bandgap. Consequently, dark cur-
rent and background photocurrent experience the same 
avalanche gain statistics and can be grouped into a single 
quantity, IDC. The associated average primary electron count 
from this combined DC current is then:

Equation 15:

⟨pDC⟩ ≈
Idark + Ibackground

qM te =
IDC

qM te , 

where Idark and Ibackground are both in units of amps.

The average multiplied electron count from dark current and 
background photocurrent is:

Equation 16:

⟨nDC⟩ = ⟨pDC⟩ × M.

When the TIA does not have a separate output-voltage 
offset, ⟨nDC⟩ is the input-referred form of Vdark, and Equation 
16 is a restatement of Equation 8.

In the case of a switched CTIA, charge from the APD may 
be accumulated over a current integration time (tint) that is 
longer than te. In that case, tint replaces te in Equation 14 
and Equation 15. However—because dark current from the 
detector integrates too quickly, a ramped detection thresh-
old that exactly tracks the charge integrated since the last 
reset is difficult to implement, and the settling time following 
a switched reset is too long—it is impractical to use switched 
CTIAs for lidar. Instead, CTIAs that are continuously reset 
through a low-pass filter or RTIAs that have some integrat-
ing characteristics are commonly employed. The simplest 
example of the latter is an RTIA with insufficient bandwidth 
to match the rise time of the photocurrent pulse from the 
APD. When the bandwidth of an RTIA is too low for Vout to 
track the input photocurrent waveform, the photocurrent 
charge deposited on its input shifts the input potential from 
virtual ground. Current flows in the feedback resistor of 
the RTIA until the potential at the input has been restored 
to its normal operating point, effectively giving the RTIA 

[3] W. Shockley, “Currents to conductors induced by a moving point charge,” J. Appl. Phys. 9(10), 635–636 (1938).

[4] S. Ramo, “Currents induced by electron motion,” Proc. IRE 27(9), 584– 585 (1939).

[5] M. M. Hayat et al., “Gain-bandwidth characteristics of thin avalanche photodiodes,” IEEE Trans. Electron Devices 49(5), 770–781 (2002).
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some charge-integrating characteristic. This is not helpful in 
a telecommunications application, where rapid settling is 
required to resolve “0” symbols following “1” symbols. The 
canonical “eye diagram” closes when the receiver circuit 
cannot keep pace with the optical modulation. However, 
lidar is different because the optical pulses are very sparse—
typically once per 100 ms, and no faster than once per 1 
μs—so rise times in the order of tens of nanoseconds do not 
hamper reception of consecutive pulses.

For either the case of a continuously reset CTIA or a real-
world RTIA, an effective DC current integration period (tDC) 
can be extracted from circuit simulations for use in place 
of te in Equation 15. The same circuit simulation produces 
a pulse-shape-specific value of the conversion gain; this 
value is used instead of Equation 14 to determine the signal 
response. Unfortunately, because the details of the transfer 
function of the TIA determine the quantitative relationship 
between the voltage noise at the TIA output and fluctuations 
of Idark and Ibackground at the TIA input, it is usually not pos-
sible to apply analytic methods to estimate tDC with useful 
accuracy. Instead, a simulation program with integrated cir-
cuit emphasis (SPICE) model of the TIA can be used to arrive 
at tDC. In such a SPICE model, the APD is represented by a 
DC current source equal to IDC, a transient-current source 
waveform of IAC(t) as derived from the laser pulse shape, 
a capacitor corresponding to the junction and intercon-
nect capacitance of the APD, and a current noise source of 
spectral intensity (Si). InGaAs APDs typically operate with 
subnanosecond rise time so, for most nanosecond-scale 
pulses used in lidar, the transient part of the current source 
can be approximated as the product of the APD spectral 
responsivity (R) and the optical-power waveform of the 
signal pulse, P(t):

Equation 17:

IAC(t) = R × P(t) (A),

where P(t) is in units of watts, and the spectral responsivity of 
the APD is:

Equation 18:

R = M × QE(λ/1.23984) (A/W), 

where λ is the laser wavelength in micrometers.

The spectral intensity of the current noise source that models 
multiplied shot noise on the dark current and background 
photocurrent is:

Equation 19:

SiDC = 2qMFIDC (A2/Hz), 

where the excess noise factor (F) is [2]:

Equation 20:

F = M 1 − (1− k) M − 1
M( )

2
.

SPICE models cannot simulate the full amplitude distribution 
of noise modeled by Equation 4. However, the standard 
noise deviation of Vout is accessible. The procedure for 
extracting tDC from a SPICE model of an APD photoreceiver 
is to simulate the RMS noise on Vout, in the absence of an 
optical signal, both with the noise source representing the 
APD (Vnoise) and without the noise source representing the 
APD (Vnoise TIA). The noise contributed by the TIA is uncorre-
lated with the noise contributed by the APD, so the voltage 
noise attributable to the combined dark current and back- 
ground photocurrent is:

Equation 21:

= √ –V 2noise V 2noiseTIAVnoiseAPD (V RMS).

Conversion gain for the specific pulse shape modeled by 
IAC(t) is extracted from the SPICE simulation by dividing the 
swing in Vout in response to IAC(t) by the total integrated 
charge delivered by IAC(t):

Equation 22:

= V signal

IAC(t)dt
G (V/e–),Vdark–

1
q ꭍ

where Vsignal and Vdark are the peak output voltage response 
from the SPICE simulation and the output voltage in the 
absence of a signal, respectively. It is important to note that 
Equation 17 defines IAC(t) at the output of the APD, and any 
coupling loss resulting from impedance mismatch between 
the APD and the TIA must be factored into the SPICE model.

The conversion gain is used to express the RMS voltage 
noise associated with the APD dark current and background 
photocurrent in units of electrons:

Equation 23:

= VnoiseAPD

G
n noiseAPD (e–).
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The same relationship defines the TIA input-referred charge 
noise (nnoiseTIA), the square of which is equal to the variance 
appearing in Equation 5:

Equation 24:

EQ-TARGET;temp:intralink-;e003;326;554 = VnoiseTIA

G (e–2).( )2
nnoiseTIAvar(nTIA) = 2

The noise-equivalent input (NEI) of the photoreceiver is 
found using G to refer the output-voltage noise in the zero-
signal condition (Vnoise) to an equivalent amount of input 
charge (nnoise) and using the product of the mean gain and 
QE of the APD to refer Vnoise to an equivalent input level in 
photons:

Equation 25:

= Vnoise

G × QE × M (photons).NEI

The effective DC current integration time for use in 
Equation 15 is found by equating the value for nnoiseAPD 
given by the SPICE model to the value given by the Burgess 
variance theorem, [6],[7] which underlies the noise-current 
spectral-intensity theorem of Equation 19:

Equation 26:

= IDCMF 

n 2noiseAPD = 

qn 2
noiseAPDtDC=>

⟨pDC⟩M2F = IDC

qM( )tDC
M2F

 (s).

This calculation arrives at a value for tDC that is calibrated 
such that an analytic calculation of the variance of Vout 
matches a SPICE simulation, properly accounting for the 
transfer function of the TIA acting on the APD noise spec-
trum, which Equation 19 models as white within the TIA 
bandwidth. With tDC, the full noise distribution of the APD 
photoreceiver can be computed using Equation 4. It should 
be emphasized that, because the conversion gain is used 
to relate output-voltage levels to input electron count, the 
input-referred charge noise as well as tDC is the function 
of the laser pulse shape. Conversion gain for pulses with a 
greater fraction of their energy outside the gain spectrum 
of the TIA will be lower, resulting in larger values of input-
referred charge noise such as nnoiseAPD and, therefore, larger 
values of tDC.

These methods were applied to compute PRX(nout) for a 
lidar photoreceiver assembled from a 75 μm-diameter 
InGaAs APD characterized by 80% QE at 1550 nm, k = 0.2, 
and Idark = 2.2 nA when operating at M = 10. The APD was 
paired with a TIA characterized by a 3 dB bandwidth of 
31 MHz, and—when responding to 4 ns full width at half 
maximum Gaussian-shaped laser pulses—tDC = 10.2 ns 
and nnoiseTIA = 244 e−. With these parameters, ⟨pDC⟩ = 14 
e− at M = 10. The photoreceiver output distribution was 
calculated for dark conditions (no signal or background 
photocurrent), with the APD operating at mean avalanche 
gains of M = 5, 10, and 20. The distributions computed by 
the convolution of Equation 4 are compared in Figure 4 to 
Gaussian distributions having the same means and vari-
ances. In this case, at avalanche gains greater than about 
M = 10, the divergence of the high-output tails of the pho-
toreceiver distributions from their Gaussian approximations 
causes an FAR model based on the Gaussian approximation 
to underpredict the value of Vth required to extinguish false 
alarms below a given rate.
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Figure 4: Comparison of APD photoreceiver output distributions (solid 
curves) to Gaussian approximations having the same means and variances 
(dashed curves).

Pd AND FAR FOR APD PHOTORECEIVERS

The probability of detecting a signal return pulse is the 
conditional probability that: 1) the photoreceiver is ready 
to register the pulse at the time it arrives; and 2) the pulse 
into the decision circuit exceeds the detection threshold. 
Because the decision circuit only fires when its input voltage 
rises through its detection threshold, assuming that the laser 
pulse repetition period is many multiples of the settling time 
(tsettle) of the amplifier, the probability that the receiver is 
active at the time a signal pulse arrives is the probability that 
zero false alarms have occurred within the preceding tsettle. 
We can estimate tsettle ≈ 2trise ≈ 0.7/BW and compute:

[6] R. E. Burgess, “Homophase and heterophase fluctuations in semicon- ductor crystals,” Discuss. Faraday Soc. 28, 151–158 (1959).

[7] R. E. Burgess, “Some topics in the fluctuation of photo-processes in solids,” J. Phys. Chem. Solids 22, 371–377 (1961).
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Equation 27:

Pd ≈ exp 0.7
BW( )− FAR × ∑

n  

1 − 
out ≤n  th

PRX(nout) ,

where trise is the 10%-to-90% rise time in seconds and BW is 
the 3 dB bandwidth in Hertz.

Assuming typical design and operation—with FAR < 1 kHz 
and BW > 10 MHz—the exponential prefactor is essentially 
unity, and the detection efficiency is given by the second 
quantity—the CCDF of PRX evaluated at the detection 
threshold. The exponential prefactor is primarily relevant in 
the photon-counting regime, when receivers may operate 
with detection threshold closer to the noise floor to sense 
weak signals, resulting in high FAR. When the average signal 
level is in the order of 10 photons or fewer, the divergence 
of the McIntyre distribution from its Gaussian approximation 
is large enough (Figure 3) that it may be advisable to com-
pute Pd using Equation 27. However, outside the photon-
counting regime, the Gaussian approximation may be used, 
resulting in:

Equation 28:

Pd ≈ 1
2 { }1 − erf

√ +2(n2noiseTIA (⟨nDC⟩ + ⟨nsignal⟩)MF
nth – (⟨nDC⟩ + ⟨nsignal⟩) ,

where, assuming no offset due to the TIA, ⟨nDC⟩ is 
found from Equation 15 and Equation 16, using tDC and 
⟨Nsignal⟩ = Nsignal × QE × M. Note that, if the detection 
threshold (nth = Vth/G) is referenced to the mean output 
voltage in the dark condition (Vdark), then the mean DC 
offset (⟨nDC⟩ = Vdark/G) can be omitted from the numerator 
inside the error function in Equation 28.

In the case of an RTIA characterized by transimpedance (GΩ 
in ohms) and BW in Hz, responding to a laser pulse of peak 
power Psignal in watts, Pd can also be written as:

Equation 29:

Pd ≈ 1
2 [ ]1 − erf GΩ√ 2{2qMF[R(Psignal + Pbackground) + Idark] + SI_TIA}BW

Vth – [R(Psignal + Pbackground) + Idark]GΩ )( ,

where it is assumed that a narrow bandpass optical filter 
restricts the spectrum of the background illumination to the 
laser wavelength, Pbackground is the transmitted background 
optical power in units of watts, and the input-referred noise-
current spectral intensity of the TIA (SI_TIA) is in units of A2∕Hz. 
One merit of Equation 29 is that GΩ, BW, and SI_TIA are 

specified by most RTIA manufacturers, permitting calcula-
tions without SPICE simulation. However, the same tran-
simpedance value (GΩ) in Equation 29 is assumed to apply 
equally to the peak of the signal photocurrent pulse and 
to the APD current shot noise. The case in which the RTIA 
bandwidth is too low for Vout to track the input photocurrent 
waveform—which is the configuration that often maximizes 
receiver sensitivity, given operational constraints on FAR and 
timing precision—is not modeled by Equation 29.

In developing an expression for FAR that accounts for the 
non-Gaussian distribution of APD output, we follow the 
Rice [1] calculation of the Gaussian case. Rice analyzes a 
noisy current waveform defined in terms of uncorrelated 
random variables for its current (I) and the slope of its current 
(η) at every point in time, t. A false alarm occurs when the 
current transitions through a threshold value (Ith) with a posi-
tive slope. Rice shows that the probability of this occurring 
during the infinitesimal time interval (t, t + dt) is:

Equation 30:

PDFFA =  dt
∞
 ηP(I = Ith, η; t)dη (Hz),∫0

where P(I = Ith,η;t) is the joint probability distribution of the 
current and its slope at time t, assuming the random variable 
for the current has the value Ith. The classic result of Rice 
for FAR applies to Gaussian-distributed noise, for which 
P(I = Ith,η;t) is the bivariate normal distribution. In the case 
of two uncorrelated random variables, the bivariate normal 
distribution is the product of two single-variable Gaussian 
distributions:

Equation 31:

 P(I, η; t)Gaussian = 

(A–2Hz–1).

√2� var(I)var(η)
1

× exp 1
2

[I − I ]
var(I)( )

2

 + 
[η − η]
var(η)(

2

Noting that—for I(t) not to diverge—the average slope (η) has 
to be zero, and substitution of Equation 31 in Equation 30 
gives:

Equation 32:

PDFFA_Gaussian =  dt
2�

var(η)
var(I)√ (Hz).exp 1

2
[Ith − I ]
var(I)( )

2

−

The FAR is Equation 32 without the differential dt.
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Rice relates the variances of the current and its slope to its 
autocorrelation function (ψ) at zero time lag (τ) as (respec-
tively):

Equation 33:

var(I) = Ψ0 ≡ limt→∞
 t

 I(t)I(t + τ)dt       (A2); and∫0
1
t τ=0

Equation 34:

var(η) = –Ψ0 ≡ –˝
дτ2
д2
Ψ

τ=0
(A2/s2).

The autocorrelation function is itself related to the spectral 
intensity of the noisy current by inversion of the Wiener–
Khintchine theorem [8],[9],[10]:

Equation 35:

Ψ(τ) = ∞∫0  SI(f)cos(2�fτ)df  (A2). 

Therefore:

Equation 36:

var(I) = Ψ0 = ∞∫0  SI(f)df  (A2);

Equation 37:

var(η) = 4�2 ∞∫0  f 2SI(f )df  (A2/s2).

Substituting Equation 36 and Equation 37 into Equation 32, 
the FAR for Gaussian-distributed noise is:

Equation 38:

4�2 ∫∞0  f 2SI(f)df 
FARGaussian =  1

2� √
(Hz),exp 1

2
(Ith − I )
var(I)[ 2

−×

 SI(f)df ∫∞0

{ }]

where var(I) = V 2
noise /G2

Ω is the variance of the current in 
the dark condition, Ith = Vth/GΩ is the detection threshold 
expressed as an equivalent current at the TIA input, and 
I = Vdark/GΩ is the average DC current level in the dark 
condition. In the absence of a voltage offset associated with 
the TIA, I = IDC, and if the threshold voltage is referenced to 
Vdark, I = 0.

When the noise spectrum is white (constant SI) over a finite 
bandwidth, SI cancels out in the radical and Equation 38 
becomes:

Equation 39:

FARGaussian =  1
3 BW   √ exp (Ith − I )

2Inoise

2

−[ ]2

=  
1
3 BW   √ (Hz),exp (Vth − Vdark )

2Vnoise

2

−[ ]2

where the TIA transimpedance relates the input-referred 
current quantities Ith, I, and Inoise to the corresponding 
output-voltage quantities Vth, Vdark, and Vnoise diagramed 
in Figure 2. The variance of the current in the dark condi-
tion, var(I), is found from the noise spectral intensity of the 
dark current and background photocurrent, SI_DC, given by 
Equation 19, and the input-referred noise-current spectral 
intensity of the TIA (SI_TIA):

Equation 40:

Inoise  = var(I) = BW × (SI_TIA + SI_DC)2

= BW × [SI_TIA + 2qMF(IDC)] (A2).

Within the Gaussian approximation, the threshold that must 
be set to achieve a specified FAR is found from Equation 39 
as:

Equation 41:

√3FAR
BW

–2 ln   √Ith − I
Inoise

Vth − Vdark 
Vnoise

)(== .

Calculating FAR with better accuracy at threshold levels set 
high in the tail of the output distribution of an APD photo-
receiver requires using the convolution of the McIntyre-dis-
tributed output of the APD with the Gaussian-distributed TIA 

[8] N. Wiener, “Generalized harmonic analysis,” Acta Math. 55, 117–258 (1930).

[9] A. Khintchine, “Korrelationstheorie der stationären stochastischen Prozesse,” Math. Ann. 109(1), 604–615 (1934).

[10] A. Van Der Ziel, Noise in Solid State Devices and Circuits, pp. 10–12, John Wiley and Sons, New York (1986).
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noise, PRX(nout), given by Equation 4, in place of the Gauss-
ian distribution used by Rice. PRX(nout) is an electron-count 
distribution (referred to the node between the APD and the 
TIA), but it can be used for the current distribution through 
a change of variable. Assuming the charge associated with 
electron count (nout) is transported in time (tref), the current 
can be rewritten:

Equation 42:

q
tref

I = nout ( A
2).

Following the rule for change of variable of a probability 
density function, the current distribution is:

Equation 43:

qPRX (I) = PRX (nout )  ( A
–1).

tref

dI
nout (I)  PRX [nout(I)] = d

The joint probability distribution of the current and its slope, 
equivalent to Equation 31, is:

Equation 44:

 P(I, η; t)McIntyre= q
tref PRX (nout )

( A
–2Hz–1).

1
√2�var(η)

× exp η
2var(η)

2

− ][
Substitution of the modified joint probability distribution 
into Equation 30 gives:

Equation 45:

q
tref PRX (nth ) √2�var(I)  (Hz); andPDFFA_McIntyre= dt

2�
var(η)
var(I)√

Equation 46:

FARMcIntyre =  √ 3
2�

q
tref Inoise BWPRX(nth ) (Hz).

To use Equation 46, tref must be explicitly defined. Rice’s 
equation for FAR based on Gaussian-distributed noise, 
Equation 39, is recovered from Equation 46 if the substitu-
tion nth = (tref/q)Ith is made to express the threshold volt-
age in terms of an equivalent input current rather than an 
equivalent input electron count, and a discretized Gauss-

ian distribution of mean ⟨⟨nDC⟩⟨ = (tref/q)IDC and variance 
n2

noise = var(nout) = [(tref/q)Inoise]2 is used in place of the con-
volution for PRX(nth). The Burgess variance theorem is used to 
calculate the APD contribution to n2

noise, resulting in:

Equation 47:

nnoise  = nnoiseTIA + nnoiseAPD = nnoiseTIA +  
2 2 2 2

q
tref IDC MF (e–2). 

From Equation 47, it is found that the relationship 
n2

noise = [(tref/q)Inoise]2 is equivalent to setting tref equal 
to 1/(2BW). In other words, within the approximations of a 
white noise spectrum and a flat TIA frequency response, the 
effective DC current integration time is 1/(2BW). Alterna-
tively, if tDC and nnoiseTIA have been obtained from SPICE 
simulations, the FAR of Equation 46 can be expressed as:

Equation 48:

FARMcIntyre =  √ 3
2� nnoiseBWPRX(nth ) (Hz).

It is important that nth be consistently defined if Equation 48 
is used to find a threshold corresponding to a specified FAR 
and that Equation 28 then be used to determine the signal-
detection probability at that threshold. As noted earlier, 
if Vth is measured in the lab relative to Vdark, the DC offset 
⟨⟨nDC⟩⟨ is omitted from the numerator of Equation 28 for 
Pd. This treatment is consistent with omitting Vdark or I from 
the (Vth−Vdark) or (Ith − I) expressions in the Gaussian FAR 
models of Equation 39 and Equation 41. However, when 
the convolution PRX(nout) defined in Equation 4 is used with 
Equation 48 for FAR, the value of nout that maps to a given 
FAR is not referenced to ⟨nDC⟩. Consequently, the offset 
⟨nDC⟩ must be retained in the numerator of Equation 28 
for Pd calculations based on threshold levels found from 
Equation 4 and Equation 48.

In Figure 5, FARs calculated by the Gaussian approximation 
of Equation 39 are compared with those calculated using 
Equation 48, based on the same photoreceiver parameters 
as Figure 4. FARs in the vicinity of 10 to 100 Hz are of techno-
logical interest, and it can be observed from Figure 5 that, 
in this case, the Gaussian approximation underestimates the 
detection threshold required to operate with a FAR below 
10 Hz at an APD gain of M = 20 by about 34%. The size of 
the discrepancy is strongly dependent on APD gain as well 
as the relative magnitude of APD shot noise compared with 
TIA circuit noise. In the case graphed in Figure 5, ampli-
fier noise dominates, with nnoiseTIA = 244 e−; at M = 10, 
nnoiseAPD = 71 e−; and at M = 20, nnoiseAPD = 160 e−. When 
the APD noise is more dominant, such as for photoreceivers 
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assembled from larger-diameter APDs or those character-
ized by larger values of k—or when any APD photoreceiver 
is operated at higher avalanche gain—the skew of the 
McIntyre distribution has a larger impact on the FAR versus 
threshold characteristic.
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Figure 5: Comparison of FAR versus detection threshold characteristics com-
puted using either the convolution model of PRX (solid curves) or its Gaussian 
approximation (dashed curves).

PHOTORECEIVER PERFORMANCE AND 
RECEIVER OPERATING CHARACTERIS-
TIC

The signal level required to achieve 99% Pd is shown in 
Figure 6 as a function of FAR, for different APD gains. The 
photoreceiver parameters are the same as those used in 
Figure 4 and Figure 5. Sensitivity improves as the gain 
increases from M = 10 to M = 20. The plot also shows 
that the optimal APD gain is closer to M = 15 than M = 20 
because, at M > 10, the threshold required to extinguish 
false alarms diverges from the Gaussian model, as shown 
in Figure 5. This fact is missed by the sensitivity calculation 
based on the Gaussian approximation, which predicts lower 
overall signal levels and shows M = 20 to be superior to 
M = 15.
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Figure 6: Mean signal level required to achieve Pd = 99% as calculated at 
different APD gains using either the convolution model of PRX (solid curves) or 
its Gaussian approximation (dashed curves).

A plot of Pd versus FAR at a mean signal level of 250 photons 
for the same receiver is presented in Figure 7. An ROC for a 
specified range gate can be computed from this information 
using Equation 2.
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Figure 7: Pd versus FAR at three different APD gains, for a mean signal level 
of 250 photons, calculated using either the convolution model of PRX (solid 
curves) or its Gaussian approximation (dashed curves).

The NEI and sensitivities for FAR = 150 Hz at 95% and 99% 
Pd are plotted in Figure 8 as functions of avalanche gain, at 
different operating temperatures. The NEI, which is cal-
culated from the standard deviation of Vout, is, compared 
with FAR, less sensitive to the tail of the distribution. This is 
evident in Figure 8, where, at 27°C and 50°C, the gain that 
minimizes NEI is less than the gain that achieves the best 
sensitivity at the specified FAR. The optimal gain at −40°C 
is greater than at the other temperatures, owing to less APD 
dark current because it is the APD that generates the higher-
amplitude false alarms that necessitate setting higher detec-
tion thresholds than predicted by the Gaussian noise model. 
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Figure 8: NEI and sensitivity for FAR = 150 Hz at Pd = 95% and 99% versus 
avalanche gain at −40°C, 27°C, and 50°C, modeled from empirical 75 μm 
Allegro photoreceiver dark current, excess noise, and NEI data.

The ratios between 95% and 99% sensitivity and NEI 
are plotted in Figure 9. This ratio is related to the ratio 
between threshold and noise given by Equation 41, 
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being close to [(nth−⟨⟨nDC⟩)/nnoise] + 1.65 for Pd = 95% 
and [(nth−⟨⟨nDC⟩)/nnoise] + 2.4 for Pd = 99%; for Pd = 50%, 
Equation 41 is the same as the sensitivity-to-NEI ratio. 
Equation 41 gives [(nth−⟨⟨nDC⟩)/nnoise] ≈ 4.85 for 
BW = 31 MHz and FAR = 150, and as M→1, the 95% and 
99% sensitivity-to-NEI ratio converge on the values of 
6.5 and 7.25 predicted by the Gaussian model.
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Figure 9: Ratio of sensitivity to NEI, for 150 Hz FAR, modeled from empirical 
Allegro 75 μm photoreceiver dark current, excess noise, and NEI data.

A similar NEI-to-sensitivity curve is presented in Figure 10, 
overlaid by the percent error from the Gaussian approxima-
tion. The error of the Gaussian approximation increases as 
the operating gain and temperature increase.
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Figure 10: Ratio of sensitivity to NEI for 99% Pd, for 150 Hz FAR, with error of 
Gaussian approximation.

CONCLUSION

A correction to the Gaussian FAR model has been presented 
with estimates of the impact on calculations of sensitivity 
and ROC. Errors become significant as APD noise starts to 
dominate the total noise of the photoreceiver, which occurs 
at higher temperatures and avalanche gains. In such cases, 
numerical convolution of the APD McIntyre-distributed dark 
current with Gaussian-distributed TIA noise can support 
more accurate modeling, prior to empirical characterization 
of FAR versus detection threshold. The simulated results 
presented, which are based on measurements of Allegro 
APD photoreceivers, demonstrate where the limitations of 
the Gaussian model lie for a relevant example.



955 PERIMETER ROAD • MANCHESTER, NH 03103 • USA
+1-603-626-2300 • FAX: +1-603-641-5336 • ALLEGROMICRO.COM

MCO-0001216, Rev. 1
P0175

Copyright 2023, Allegro MicroSystems.

The information contained in this document does not constitute any representation, warranty, assurance, guaranty, or induce-
ment by Allegro to the customer with respect to the subject matter of this document. The information being provided does 
not guarantee that a process based on this information will be reliable, or that Allegro has explored all of the possible failure 
modes. It is the customer’s responsibility to do sufficient qualification testing of the final product to ensure that it is reliable and 
meets all design requirements.

Copies of this document are considered uncontrolled documents.

Revision History

Number Date Description Responsibility

– March 17, 2022 Initial release A. Huntington

1 March 15, 2023 Minor editorial correction (page 1) A. Huntington

This document is based on the following published work:

© The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduc-
tion of this work in whole or in part requires full attribution of the original publication, including its DOI.

Andrew S. Huntington, George M. Williams, and Adam O. Lee “Modeling false alarm rate and related characteristics 
of laser ranging and LIDAR avalanche photodiode photoreceivers,” Optical Engineering 57(7), 073106 (18 July 2018). 
https://doi.org/10.1117/1.OE.57.7.073106

Received: 18 March 2018; Accepted: 5 June 2018; Published: 18 July 2018

https://doi.org/10.1117/1.OE.57.7.073106

