Last Time Buy This part is in production but has been determined to be LAST TIME BUY. This classification indicates that the product is obsolete and notice has been given. Sale of this device is currently restricted to existing customer applications. The device should not be purchased for new design applications because of obsolescence in the near future. Samples are no longer available. Date of status change: September 30, 2024 Deadline for receipt of LAST TIME BUY orders: January 31, 2025 NOTE: For detailed information on purchasing options, contact your local Allegro field applications engineer or sales representative. Allegro MicroSystems reserves the right to make, from time to time, revisions to the anticipated product life cycle plan for a product to accommodate changes in production capabilities, alternative product availabilities, or market demand. The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use. #### **FEATURES AND BENEFITS** - AEC-Q100 automotive qualified - Factory-set temperature coefficient (TC) for use with ferrite magnets - High-speed, 4-phase chopper stabilization - Low switchpoint drift throughout temperature range - Low sensitivity to thermal and mechanical stresses - On-chip protection - Supply transient protection - Reverse-battery protection - On-board voltage regulator - □ 3 to 24 V operation - Solid-state reliability Continued on the next page... #### PACKAGE: 2-Pin, Ultra-Mini SIP (suffix UB) #### **DESCRIPTION** The A1152-F, A1153-F, A1155-F, and A1156-F comprise a family of two-wire, unipolar, Hall-effect switches, which are factory-trimmed to optimize magnetic switchpoint accuracy. These devices are produced on the Allegro™ advanced BiCMOS wafer fabrication process, which implements a high-frequency, 4-phase, chopper stabilization technique. This technique achieves magnetic stability over the full operating temperature range, and eliminates offsets inherent in devices with a single Hall element that are exposed to harsh application environments. The A115x family has a number of automotive applications. These include sensing seat track position, seat belt buckle presence, hood/trunk latching, and shift selector position. Two-wire unipolar switches are particularly advantageous in cost-sensitive applications because they require one less wire for operation versus the more traditional open-collector output switches. Additionally, the system designer inherently gains diagnostics because there is always output current flowing, which should be in either of two narrow ranges. Any current level not within these ranges indicates a fault condition. Continued on the next page... #### **Functional Block Diagram** ### **Chopper-Stabilized Two-Wire Hall-Effect Switches** #### FEATURES AND BENEFITS (CONTINUED) - Robust EMC and ESD performance - Industry-leading ISO 7637-2 performance through use of proprietary, 40 V clamping structures - Extended Operating Ambient temperature range, -40°C to 150°C - UB package with integrated 0.1 μF bypass capacitor #### **DESCRIPTION (CONTINUED)** The UB is a 2-pin, ultra-mini, single inline package (SIP) for through-hole mounting, and it is lead (Pb) free, with 100% matte-tin leadframe plating. #### **SELECTION GUIDE** | Part Number | Packing | Package | Output (I _{CC}) in
South Polarity
Field | Supply Current
at I _{CC(L)}
(mA) | Magnetic Operate
Point, B _{OP,}
at T _A = 25°C
(G) | |----------------|-------------------------------|------------------------|---|---|--| | A1152LUBTN-F-T | 13-in. reel, 4000 pieces/reel | 2-pin SIP through-hole | Low | 5 to 6.9 | 58 to 100 | | A1153LUBTN-F-T | 13-in. reel, 4000 pieces/reel | 2-pin SIP through-hole | High | 5 to 6.9 | 58 to 100 | | A1155LUBTN-F-T | 13-in. reel, 4000 pieces/reel | 2-pin SIP through-hole | Low | 5 to 6.9 | 16 to 60 | | A1156LUBTN-F-T | 13-in. reel, 4000 pieces/reel | 2-pin SIP through-hole | High | 5 to 6.9 | 16 to 60 | ### **Chopper-Stabilized Two-Wire Hall-Effect Switches** #### **ABSOLUTE MAXIMUM RATINGS** | Characteristic | Symbol | Notes | Rating | Unit | |-------------------------------|----------------------|---------|------------|------| | Forward Supply Voltage | V _{CC} | | 28 | V | | Reverse Supply Voltage | V _{RCC} | | -18 | V | | Magnetic Flux Density | В | | Unlimited | G | | Operating Ambient Temperature | T _A | Range L | -40 to 150 | °C | | Maximum Junction Temperature | T _J (max) | | 165 | °C | | Storage Temperature | T _{stg} | | -65 to 170 | °C | #### INTERNAL DISCRETE CAPACITOR RATINGS | Characteristic | Symbol | Notes | Rating | Unit | |---------------------------|----------------------|-------------------------------|--------|------| | Rated Normal Capacitance | C _{SUPPLY} | Connected between VCC and GND | 0.1 | μF | | Rated Voltage | V _{CSUPPLY} | | 50 | V | | Rated Capacitor Tolerance | | | ±10 | % | | Temperature Designator | | | X7R | _ | #### **Pinout Diagram** UB Package #### **Terminal List Table** | Number | Name | Function | |--------|------|--------------------| | 1 | VCC | Input power supply | | 2 | GND | Ground terminal | ### **Chopper-Stabilized Two-Wire Hall-Effect Switches** **ELECTRICAL CHARACTERISTICS:** Valid at $T_A = -40^{\circ}\text{C}$ to 150°C, $T_J < T_J(\text{max})$, $C_{\text{BYP}} = 0.01 \,\mu\text{F}$ (excluding UB), through operating supply voltage range, unless otherwise noted | Characteristics | Symbol | Test Condition | Min. | Тур. | Max. | Unit | | |----------------------------------|---------------------------------------|---|----------------------------|------|--------------------|------------------------------------|-------| | Supply Voltage ^{[1][2]} | V _{CC} | Operating, T _J ≤ 165 °C | | 3.0 | _ | 24 | V | | | | A1152, A1155 | B > B _{OP} | 5 | - | 6.9 | mA | | Cumply Current | I _{CC(L)} | A1153, A1156 | B < B _{RP} | 5 | | | | | Supply Current | | A1152, A1155 | B < B _{RP} | 40 | _ | 17 | Л | | | I _{CC(H)} | A1153, A1156 | B > B _{OP} | 12 | | | mA | | Supply Zener Clamp Voltage | $V_{Z(sup)}$ | I _{CC(L)} (max) + 3 i | 28 | _ | _ | V | | | Supply Zener Clamp Current | I _{Z(sup)} | V _{Z(sup)} = 28 V | | - | _ | I _{CC(L)} (max)
+ 3 mA | mA | | Reverse Supply Current | I _{RCC} | V _{RCC} = -18 V | - | - | -1.6 | mA | | | Output Slew Rate ^[3] | di/dt | Integrated bypass capacitor, capacitance of probe $C_S = 20 \text{ pF}$ | | - | 0.22 | - | mA/μs | | Chopping Frequency | f _c | | | - | 700 | _ | kHz | | Dower Lin Time [A][5] | ime ^{[4][5]} t _{on} | A1152, A1155 | B > B _{OP} + 10 G | | - | 25 | μs | | Power-Up Time ^{[4][5]} | | A1153, A1156 | B < B _{RP} – 10 G | _ | | | | | Power-Up State [2][4][6][7] | POS | t _{on} < t _{on} (max), V _{CC} slew rate > 25 mV/μs | | - | I _{CC(H)} | _ | - | $^{^{[1]}\}mathrm{V}_{\mathrm{CC}}$ represents the generated voltage between the VCC pin and the GND pin. ^[2] The V_{CC} slew rate must exceed 600 mV/ms from 0 to 3 V. A slower slew rate through this range can affect device performance. ^[3] Measured without bypass capacitor between VCC and GND. Use of a bypass capacitor results in slower current change. ^[4] Power-Up Time is measured without and with bypass capacitor of 0.01 µF. Adding a larger bypass capacitor would cause longer Power-Up Time. ^[5] Guaranteed by characterization and design. $^{^{\}text{[6]}}$ Power-Up State as defined is true only with a V_{CC} slew rate of 25 mV/µs or greater. $^{\ ^{[7]}}$ For t > t_{on} \ and B_{RP} < B < B_{OP}, Power-Up State is not defined. ### **Chopper-Stabilized Two-Wire Hall-Effect Switches** #### **MAGNETIC CHARACTERISTICS** [1]: Valid at $T_A = -40^{\circ}\text{C}$ to 150°C ($T_J < T_J$ (max)), unless otherwise noted | Characteristics | Symbol | ol Test Conditions | | Min. | Тур. | Max. | Unit [2] | |--------------------------|------------------|-------------------------|------------------------|------|------|------|----------| | MAGNETIC CHARACTERISTICS | | | | | | | | | | | 1152,
1153 | T _A = -40°C | 72 | _ | 118 | G | | | | | T _A = 25°C | 58 | _ | 100 | G | | Magnetic Operating Daint | B | 1100 | T _A = 150°C | 37 | _ | 68 | G | | Magnetic Operating Point | B _{OP} | | T _A = -40°C | 23 | _ | 73 | G | | | | 1155,
1156 | T _A = 25°C | 16 | _ | 60 | G | | | | | T _A = 150°C | 9 | _ | 49 | G | | | | 1152,
1153 | T _A = -40°C | 56 | _ | 103 | G | | | | | T _A = 25°C | 46 | _ | 85 | G | | Magnetic Pologos Point | | | T _A = 150°C | 22 | _ | 58 | G | | Magnetic Release Point | B _{RP} | 1155,
1156 | T _A = -40°C | 6 | _ | 53 | G | | | | | T _A = 25°C | 4 | _ | 45 | G | | | | | T _A = 150°C | 4 | _ | 39 | G | | | | 1152,
1153,
1155, | T _A = -40°C | 5 | _ | 30 | G | | Hysteresis | B _{HYS} | | T _A = 25°C | 5 | _ | 30 | G | | | | | T _A = 150°C | 5 | _ | 30 | G | ^[1] Relative values of B use the algebraic convention, where positive values indicate south magnetic polarity, and negative values indicate north magnetic polarity; therefore greater B values indicate a stronger south polarity field (or a weaker north polarity field, if present). ^{[2] 1} G (gauss) = 0.1 mT (millitesla). THERMAL CHARACTERISTICS: may require derating at maximum conditions; see application information | Characteristic Symbol | | Test Conditions* | Value | Unit | |----------------------------|----------------|---|-------|------| | Package Thermal Resistance | $R_{ heta JA}$ | Package UB, on 1-layer PCB with copper limited to solder pads | 213 | °C/W | ^{*}Additional thermal information available on the Allegro website #### **UB Power Derating Curve** #### **UB Power Dissipation versus Ambient Temperature** #### CHARACTERISTIC PERFORMANCE A1152-F/A1153-F Average Supply Current (Low) versus Temperature A1152-F/A1153-F Average Supply Current (Low) versus Temperature A1152-F/A1153-F Average Supply Current (High) versus Temperature A1155-F/A1156-F Average Supply Current (Low) versus Supply Voltage A1155-F/A1156-F Average Supply Current (Low) versus Supply Voltage A1155-F/A1156-F Average Supply Current (High) versus Supply Voltage A1152-F/A1153-F Average Operate Point versus Temperature A1152-F/A1153-F Average Release Point versus Temperature A1152-F/A1153-F Average Switchpoint Hysteresis versus Temperature A1155-F/A1156-F Average Operate Point versus Temperature A1155-F/A1156-F Average Release Point versus Temperature A1155-F/A1156-F Average Switchpoint Hysteresis versus Temperature #### **FUNCTIONAL DESCRIPTION** The A1152 and A1155 output, I_{CC} , switches low after the magnetic field at the Hall sensor IC exceeds the operate point threshold, B_{OP} . When the magnetic field is reduced to below the release point threshold, B_{RP} , the device output goes high. This is shown in Figure 1, panel A. In the case of the reverse output polarity, as in the A1153 and A1156, the device output switches high after the magnetic field at the Hall sensor IC exceeds the operate point threshold, B_{OP} . When the magnetic field is reduced to below the release point threshold, B_{RP} , the device output goes low (panel B). The difference between the magnetic operate and release points is called the hysteresis of the device, B_{HYS}. This built-in hysteresis allows clean switching of the output even in the presence of external mechanical vibration and electrical noise. (A) Hysteresis curve for A1152 and A1155 (B) Hysteresis curve for A1153 and A1156 Figure 1: Alternative Switching Behaviors Available in the A115x Device Family. On the horizontal axis, the B+ direction indicates increasing south polarity magnetic field strength, and the B– direction indicates decreasing south polarity field strength (including the case of increasing north polarity). ### **Chopper-Stabilized Two-Wire Hall-Effect Switches** Figure 2: Typical Application Circuits #### **Chopper Stabilization Technique** When using Hall-effect technology, a limiting factor for switchpoint accuracy is the small signal voltage developed across the Hall element. This voltage is disproportionally small relative to the offset that can be produced at the output of the Hall sensor IC. This makes it difficult to process the signal while maintaining an accurate, reliable output over the specified operating temperature and voltage ranges. Chopper stabilization is a unique approach used to minimize Hall offset on the chip. The Allegro technique, namely Dynamic Quadrature Offset Cancellation, removes key sources of the output drift induced by thermal and mechanical stresses. This offset reduction technique is based on a signal modulation-demodulation process. The undesired offset signal is separated from the magnetic field-induced signal in the frequency domain, through modulation. The subsequent demodulation acts as a modulation process for the offset, causing the magnetic field-induced signal to recover its original spectrum at base band, while the DC offset becomes a high-frequency signal. The magnetic-sourced signal then can pass through a low-pass filter, while the modulated DC offset is suppressed. The chopper stabilization technique uses a 350 kHz high frequency clock. For demodulation process, a sample and hold technique is used, where the sampling is performed at twice the chopper frequency. This high-frequency operation allows a greater sampling rate, which results in higher accuracy and faster signal-processing capability. This approach desensitizes the chip to the effects of thermal and mechanical stresses, and produces devices that have extremely stable quiescent Hall output voltages and precise recoverability after temperature cycling. This technique is made possible through the use of a BiCMOS process, which allows the use of low-offset, low-noise amplifiers in combination with high-density logic integration and sample-and-hold circuits. Figure 3: Chopper Stabilization Circuit (Dynamic Quadrature Offset Cancellation) ### **Chopper-Stabilized Two-Wire Hall-Effect Switches** #### **Power Derating** The device must be operated below the maximum junction temperature of the device, $T_J(max)$. Under certain combinations of peak conditions, reliable operation may require derating supplied power or improving the heat dissipation properties of the application. This section presents a procedure for correlating factors affecting operating T_J . (Thermal data is also available on the Allegro MicroSystems Web site.) The Package Thermal Resistance, $R_{\theta JA}$, is a figure of merit summarizing the ability of the application and the device to dissipate heat from the junction (die), through all paths to the ambient air. Its primary component is the Effective Thermal Conductivity, K, of the printed circuit board, including adjacent devices and traces. Radiation from the die through the device case, $R_{\theta JC}$, is relatively small component of $R_{\theta JA}$. Ambient air temperature, T_A , and air motion are significant external factors, damped by overmolding. The effect of varying power levels (Power Dissipation, P_D), can be estimated. The following formulas represent the fundamental relationships used to estimate T_I , at P_D . $$P_D = V_{IN} \times I_{IN} \tag{1}$$ $$\Delta T = P_D \times R_{\Theta IA} \tag{2}$$ $$T_I = T_A + \Delta T \tag{3}$$ For example, given common conditions such as: T_A = 25°C, V_{CC} = 12 V, I_{CC} = 4 mA, and $R_{\theta JA}$ = 140 °C/W, then: $$\begin{split} P_D &= V_{CC} \times I_{CC} = 12~V \times 4~mA = 48~mW \\ \Delta T &= P_D \times R_{\theta JA} = 48~mW \times 140~^{\circ}C/W = 7^{\circ}C \\ T_J &= T_A + \Delta T = 25^{\circ}C + 7^{\circ}C = 32^{\circ}C \end{split}$$ A worst-case estimate, $P_D(max)$, represents the maximum allowable power level ($V_{CC}(max)$, $I_{CC}(max)$), without exceeding $T_J(max)$, at a selected $R_{\theta JA}$ and T_A . *Example*: Reliability for V_{CC} at T_A =150°C, package UA, using a low-K PCB. Observe the worst-case ratings for the device, specifically: $R_{\theta JA}$ =213 °C/W, T_J (max)=165°C, V_{CC} (max)=24 V, and I_{CC} (max)=17 mA. Calculate the maximum allowable power level, $P_D(max)$. First, invert equation 3: $$\Delta T_{max} = T_{J}(max) - T_{A} = 165 \,^{\circ}C - 150 \,^{\circ}C = 15 \,^{\circ}C$$ This provides the allowable increase to T_J resulting from internal power dissipation. Then, invert equation 2: $$P_D(max) = \Delta T_{max} \div R_{\theta JA} = 15^{\circ}C \div 213^{\circ}C/W = 70.5 \,\text{mW}$$ Finally, invert equation 1 with respect to voltage: $$V_{CC(est)} = P_D(max) \div I_{CC}(max) = 70.5 \text{ mW} \div 17 \text{ mA} = 4.15 \text{ V}$$ The result indicates that, at T_A , the application and device can dissipate adequate amounts of heat at voltages $\leq V_{CC(est)}$. Compare $V_{CC(est)}$ to $V_{CC}(max)$. If $V_{CC(est)} \leq V_{CC}(max)$, then reliable operation between $V_{CC(est)}$ and $V_{CC}(max)$ requires enhanced $R_{\theta JA}$. If $V_{CC(est)} \geq V_{CC}(max)$, then operation between $V_{CC(est)}$ and $V_{CC}(max)$ is reliable under these conditions. ## Package UB, 2-Pin SIP For Reference Only – Not for Tooling Use (Reference DWG-0000408, Rev. 4) Dimensions in millimeters – NOT TO SCALE Exact case and lead configuration at supplier discretion within limits shown Branding scale and appearance at supplier discretion ### **Chopper-Stabilized Two-Wire Hall-Effect Switches** #### **Revision History** | Number | Date | Description | |--------|--------------------|--| | _ | September 29, 2014 | Initial release | | 1 | April 2, 2015 | Updated branding info on package drawing | | 2 | September 21, 2015 | Added AEC-Q100 qualification under Features and Benefits | | 3 | June 21, 2016 | Corrected internal discrete capacitor ratings | | 4 | January 16, 2019 | Minor editorial updates | | 5 | January 22, 2020 | Minor editorial updates | | 6 | February 3, 2022 | Updated package drawing (page 12) | | 7 | September 30, 2024 | Updated product status to last-time buy | Copyright 2024, Allegro MicroSystems. Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current. Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm. The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use. Copies of this document are considered uncontrolled documents. For the latest version of this document, visit our website: www.allegromicro.com